The Java ExecutorService Interface

[(Part4)

Douglas C. Schmidt
i.schmidt@vanderbiit.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software
E 7 Integrated Systems
Vanderhilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Learn how to program a “PrimeChecker” app using the
Java ExecutorService interface

tarting primality computations

863137601 is not prime with smallest factor 67
181858090 is not prime with smallest factor 2
074979154 is not prime with smallest factor 2
1870407455 is not prime with smallest factor 5
833235127 is not prime with smallest factor 17
651621695 is not prime with smallest factor 5
1311987041 is not prime with smallest factor 971
703018233 is not prime with smallest factor 3
1055928155 18 not prime with smallest factor 5
833102181 is not prime with smallest factor 3
1030676473 is not prime with smallest factor 619
127457798 is not prime with smallest factor 2

553326869 is prime

16682593 is not prime with smallest factor 11
509282196 is not prime with smallest factor 2
755195772 is not prime with smallest factor 2
1320523007 is not prime with smallest facter 37
587637322 is not prime with smallest factor 2
1766004629 is prime

28824527 is not prime with smallest factor 79
4461966 is not prime with smallest factor 2
1679873625 is not prime with smallest factor 3
139079501 is not prime with smallest factor 11
1699167856 is not prime with smallest factor 2

1563413821 is prime
Finished primality computations

Overview of the
PrimeChecker App

Overview of the PrimeChecker App

 This “embarrassingly parallel” & compute-bound app uses the
Java ExecutorService to check if NVrandom #'s are prime

tarting primality computations
869137601 is not prime with smallest factor 67
181858090 is not prime with smallest factor 2
074979154 is not prime with smallest factor 2
1870407455 is not prime with smallest factor 5
833235127 is not prime with smallest factor 17
651621695 is not prime with smallest factor 5
1311987041 is not prime with smallest factor 971
703018233 is not prime with smallest factor 3
1055928155 is not prime with smallest factor 5
833102181 is not prime with smallest factor 3
1030676473 is not prime with smallest factor 619
127457798 is not prime with smallest factor 2
583326869 is prime

16682593 is not prime with smallest factor 11
509282196 is not prime with smallest factor 2
755195772 is not prime with smallest factor 2
1320523007 is not prime with smallest factor 37
587637322 is not prime with smallest factor 2
1766004629 is prime

28824527 is not prime with smallest factor 79
24461966 is not prime with smallest factor 2
1679873625 is not prime with smallest factor 3
1390795017 is not prime with smallest factor 11
1699167856 is not prime with smallest factor 2
1563413821 is prime
Finished primality computations

See github.com/douglascraigschmidt/POSA/tree/master/ex/M4/Primes/PrimeExecutorService

https://github.com/douglascraigschmidt/POSA/tree/master/ex/M4/Primes/PrimeExecutorService

Overview of the PrimeChecker App

 This “embarrassingly parallel” app shows how the Java
ExecutorService can determine if Nrandom #'s are prime

« It also shows how to handle runtime
configuration changes in Android

‘Y w10

100000000

Starting primality computations
863137601 is not prime with smallest factor 67
181858090 is not prime with smallest factor 2
074979154 is not prime with smallest factor 2
1870407455 is not prime with smallest factor 5
833235127 is not prime with smallest factor 17
651621695 is not prime with smallest factor 5
1311987041 is not prime with smallest factor 971
703018233 is not prime with smallest factor 3
1055928155 18 not prime with smallest factor 5
833102181 is not prime with smallest factor 3
1030676473 is not prime with smallest factor 619
127457798 is not prime with smallest factor 2
583326869 is prime

16682593 is not prime with smallest factor 11
509282196 is not prime with smallest factor 2
755195772 is not prime with smallest factor 2
1320523007 is not prime with smallest facter 37
587637322 is not prime with smallest factor 2
1766004629 is prime

28824527 is not prime with smallest factor 79
24461906 is not prime with smallest factor 2
1679873625 is not prime with smallest factor 3
139079501 is not prime with smallest factor 11
1699167856 is not prime with smallest factor 2
1563413821 is prime

Finished primality computations

See developer.android.com/guide/topics/resources/runtime-changes.html

https://developer.android.com/guide/topics/resources/runtime-changes.html

Overview of the PrimeChecker App

 This “embarrassingly parallel” app shows how the Java
ExecutorService can determine if Nrandom #'s are prime

« As well as thread interruptions

‘Y w10

100000000

tarting primality computations
863137601 is not prime with smallest factor 67
181858090 is not prime with smallest factor 2
074979154 is not prime with smallest factor 2
1870407455 is not prime with smallest factor 5
833235127 is not prime with smallest factor 17
651621695 is not prime with smallest factor 5
1311987041 is not prime with smallest factor 971
703018233 is not prime with smallest factor 3
1055928155 18 not prime with smallest factor 5
833102181 is not prime with smallest factor 3
1030676473 is not prime with smallest factor 619
(127457798 is not prime with smallest factor 2
583326869 is prime
16682593 is not prime with smallest factor 11
509282196 is not prime with smallest factor 2
755195772 is not prime with smallest factor 2
1320523007 is not prime with smallest facter 37
587637322 is not prime with smallest factor 2
1766004629 is prime
28824527 is not prime with smallest factor 79
24461906 is not prime with smallest factor 2
1679873625 is not prime with smallest factor 3
139079501 is not prime with smallest factor 11
1699167856 is not prime with smallest factor 2
1563413821 is prime
Finished primality computations

See docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.htmi

https://docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html

Overview of the PrimeChecker App

« A fixed-size thread pool is tuned to # of processor

cores in the computing device

mExecutor = Executors
.newFixedThreadPool
(Runtime.getRuntime () .
availableProcessors()) ;

PrimeResult

PrimeResult
PrimeResult

PrimeResult

List of
Futures

Callable

/

Ul Thread
(main thread)

_,.g / 1.execute

(task)

73735 45963
02965 58303
98859 23851
33666 62570
81666 26440

78134 63873
90708 20025
27965 62394
64775 78428
20422 05720

Stream of Random Numbers

L

execute() run ()
\ D
2.o0ffer ()
\ 7
N S8 o
'§§§§§§
callable Fixed
WorkerThreads
callable
callable /
3.take()
callable 4.run()
WorkQueue callable

ThreadPoolExecutor

Overview of the PrimeChecker App

« A fixed-size thread pool is tuned to # of processor

cores in the computing device

mExecutor = Executors
.newFixedThreadPool
(Runtime.getRuntime () .
availableProcessors()) ;

PrimeResult

PrimeResult

PrimeResult

PrimeResult

Ul Thread

—+':
(main thread) g

The UI thread generates random #5s
that are processed via the thread pool

List of
Futures

Callable

/
1l.execute
(task)

73735 45963
02965 58303
98859 23851
33666 62570
81666 26440

78134 63873
90708 20025
27965 62394
64775 78428
20422 05720

Stream of Random Numbers

L

execute() run ()
' D)
2.0ffer ()
\ 7
\ S5 o
-92;;2;%5
callable Fixed
WorkerThreads
callable
callable ////
3.take()
callable 4.run()
WorkQueue callable
ThreadPoolExecutor

8

Overview of the PrimeChecker App

« A fixed-size thread pool is tuned to # of processor 73735 45963 78134 63873

. . . 02965 58303 90708 20025
cores in the computing device 98859 23851 27965 62394

33662 62570 g4775 78428
1666 26440 20422 05720
mExecutor = Executors S——
newFixedThreadPool L Stream of Random Numbers
(Runtime.getRuntime () . execute() run ()
availableProcessors()) ; \ m
! 2.offer ()
List of \ L -
Futures h egééegeg
callable Fixed
Callable — WorkerThreads
/ Ccallable
Ul Thread _,,g / 1.execute callable /
(main thread) (task) 3.take ()
[| callable {7 4.run()
This fixed-size thread pool usesan | __———— | \oigueee —
unbounded gueue to avoid deadlocks
ThreadPoolExecutor

See asznajder.github.io/thread-pool-induced-deadlocks

http://asznajder.github.io/thread-pool-induced-deadlocks

Overview of the PrimeChecker App

« A fixed-size thread pool is tuned to # of processor

cores in the computing device

...mThread = new Thread(...);

.. .mThread.start () ;

\

PrimeResult

PrimeResult

PrimeResult

PrimeResult

List of

Futures

Callable

/

Ul Thread
(main thread)

E

/ 1.submit

(task)

Start a 2" thread to wait
for all futures to complete

Background

Thread

E

73735 45963
02965 58303
98859 23851
33666 62570
81666 26440

78134 63873
90708 20025
27965 62394
64775 78428
20422 05720

Stream of Random Numbers

L

submit() run ()
' D
2.0ffer ()
A} &
\ S5 o
callable Fixed
WorkerThreads
callable
callable /
3.take()
callable 4.run()
WorkQueue callable

ThreadPoolExecutor

10

Overview of the PrimeChecker App

» PrimeCallable defines a two-way means of determining whether a # is prime

class PrimeCallable
implements Callable<PrimeResult> {
long mPrimeCandidate;

<<Java Class>>
(®PrimeCallable

m isPrime(long):long

& PrimeCallable(long)
@ call():PrimeResult

PrimeCallable (Long primeCandidate)
{ mPrimeCandidate = primeCandidate; }

<<Java Class>>
(¥ PrimeResult

& mPrimeCandidate: long
& mSmallestFactor: long

long isPrime(long n) { ... }

PrimeResult call () {
return new PrimeResult (mPrimeCandidate,
isPrime (mPrimeCandidate)) ;

& PrimeResult(long,long)

}

See PrimeExecutorService/app/src/main/java/vandy/mooc/prime/adtivities/PrimeCallable.java

https://github.com/douglascraigschmidt/POSA/blob/master/ex/M4/Primes/PrimeExecutorService/app/src/main/java/vandy/mooc/prime/activities/PrimeCallable.java

Overview of the PrimeChecker App

» PrimeCallable defines a two-way means of determining whether a # is prime

class PrimeCallable
implements Callable<PrimeResult> {
long mPrimeCandidate; = —_

Implements Callable

<<Java Class>>
(®PrimeCallable

m isPrime(long):long

& PrimeCallable(long)
@ call():PrimeResult

PrimeCallable (Long primeCandidate)
{ mPrimeCandidate = primeCandidate; }

<<Java Class>>
(9 PrimeResult

& mPrimeCandidate: long
4 mSmallestFactor: long

long isPrime(long n) { ... }

PrimeResult call () {
return new PrimeResult (mPrimeCandidate,
isPrime (mPrimeCandidate)) ;

4 PrimeResult(long,long)

}

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Callable.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Callable.html

Overview of the PrimeChecker App

» PrimeCallable defines a two-way means of determining whether a # is prime

class PrimeCallable
implements Callable<PrimeResult> {

long mPrimeCandidate;
9 The constructor stores

/ the prime # candidate

PrimeCallable (Long primeCandidate)
{ mPrimeCandidate = primeCandidate; }

long isPrime(long n) { ... }
PrimeResult call () {

return new PrimeResult (mPrimeCandidate,
isPrime (mPrimeCandidate)) ;

<<Java Class>>
(®PrimeCallable

m isPrime(long):long

& PrimeCallable(long)
@ call():PrimeResult

<<Java Class>>
(¥ PrimeResult

& mPrimeCandidate: long
& mSmallestFactor: long

& PrimeResult(long,long)

See "The Java Executor Interface (Part 2)”

Overview of the PrimeChecker App

» PrimeCallable defines a two-way means of determining whether a # is prime

class PrimeCallable
implements Callable<PrimeResult> {

long mPrimeCandidate;

<<Java Class>>
(& PrimeCallable

m isPrime(long):long

& PrimeCallable(long)
@ call():PrimeResult

PrimeCallable (Long primeCandidate)
{ mPrimeCandidate = primeCandidate; }

. .] . . <<Java Class>>
long isPrime(long n) | Returns 0 if n is prime or ®PrimeResult

| smallest factor if it’s not
PrimeResult call () {
return new PrimeResult (mPrimeCandidate,
isPrime (mPrimeCandidate)) ;

& mPrimeCandidate: long
& mSmallestFactor: long

& PrimeResult(long,long)

}

An interruptible version of isPrime() from “ The Java Executor Interface (Part 2)”

Overview of the PrimeChecker App

» PrimeCallable defines a two-way means of determining whether a # is prime

class PrimeCallable

implements Callable<PrimeResult> {
long mPrimeCandidate;

PrimeCallable (Long primeCandidate)
{ mPrimeCandidate = primeCandidate; }

<<Java Class>>
(®PrimeCallable

m isPrime(long):long

& PrimeCallable(long)
@ call():PrimeResult

long isPrime(long n) | 7he call() hook method
S invokes [sPrime()

<<Java Class>>
(¥ PrimeResult

PrimeResult call () {
return new PriméResult (mPrimeCandidate,
isPrime (mPrimeCandidate)) ;

& mPrimeCandidate: long
& mSmallestFactor: long

& PrimeResult(long,long)

15

Overview of the PrimeChecker App

» PrimeCallable defines a two-way means of determining whether a # is prime

class PrimeCallable

implements Callable<PrimeResult> {
long mPrimeCandidate;

PrimeCallable (Long primeCandidate)
{ mPrimeCandidate = primeCandidate; }

long isPrime(long n) { ... }

PrimeResult call() {
return new PrimeResult (mPrimeCandidate,
isPrime (mPrimeCandidate)) ;

<<Java Class>>
(®PrimeCallable

m isPrime(long):long
& PrimeCallable(long)
@ call():PrimeResult

<<Java Class>>
(¥ PrimeResult

& mPrimeCandidate: long
& mSmallestFactor: long

& PrimeResult(long,long)

PrimeResult is a tuple that matches the prime #
candidate with the result of checking primality

Overview of the PrimeChecker App

» MainActivity creates a list of futures that store <<Java Class>>
results of concurrently checking primality of - OMAICHET
\\ " [/ T R MainActivity()
count” random #'s within a range Ry A
List<Future<PrimeResult>> PrimeResult E;”:t'g'('jzuen\t/('s‘l’;(/;:’/‘;:j
futures = ... @ startOrStopComputations(View):void
m startComputations(int):void
= interruptComputations():void
List of @ done():void
Futures @ printin(String):void

@ onRetainNonConfigurationinstance():Object

This list of futures is initialized < onDestroy():void

vig a Java 8 sequential stream

See PrimeExecutorService/app/src/main/java/vandy/mooc/prime/activities/MainActivity.java

https://github.com/douglascraigschmidt/POSA/blob/master/ex/M4/Primes/PrimeExecutorService/app/src/main/java/vandy/mooc/prime/activities/MainActivity.java

Overview of the PrimeChecker App

» MainActivity creates a list of futures that store <<Java Class>>
results of concurrently checking primality of _ OMainActivity
“count” random #'s within a range o e
List<Future<PrimeResult>> BlimeResult @ InitializeViews():vold

: @ setCount(View):void
futures = new Random/() @ startOrStopComputations(View):void
. longs (count , = startComputations(int):void
sMAX VALUE - count = interruptComputations():void
—_ ! : @ done():void
sMAX VALUE) S1stof N o printin(String):void

@ onRetainNonConfigurationinstance():Object
<> onDestroy():void

Generates “count” random #'s ranging
from sMAX_VALUE — count & sMAX_VALUE

18

Overview of the PrimeChecker App

» MainActivity creates a list of futures that store
results of concurrently checking primality of

“count” random #’s within a range

List<Future<PrimeResult>>
futures = new Random/()
.longs (count,
sMAX VALUE - count,
sMAX VALUE)

<<Java Class>>

(9 MainActivity

PrimeResult

PrimeResult

PrimeResult

PrimeResult

List of
Futures

.mapToObj (PrimeCallable: : new)

/

@ MainActivity()

<> onCreate(Bundle):void
= initializeViews():void

@ setCount(View):void

@ startOrStopComputations(View):void

m startComputations(int):void

= interruptComputations():void

@ done():void

@ printin(String):void

@ onRetainNonConfigurationinstance():Object
<> onDestroy():void

This constructor reference converts random #5 into PrimeCallables

See docs.oracle.com/javase/tutorial/java/javaO0O/methodreferences.html

https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html

Overview of the PrimeChecker App

» MainActivity creates a list of futures that store <<Java Class>>
results of concurrently checking primality of _ OMainActivity
“count” random #'s within a range o e
List<Future<PrimeResult>> PrimeResult = InitializeViews():void

: @ setCount(View):void
futures = new Random() @ startOrStopComputations(View):void
. 1ongs (count , = startComputations(int):void
sMAX VALUE - count = interruptComputations():void
—_ ! : @ done():void
SMAX_VALUE) FLJ;SJ roefs @ printin(String):void

@ onRetainNonConfigurationinstance():Object
<> onDestroy():void

.mapToObj (PrimeCallable: :new)

.map (mRetainedState.mExecutorService: :submit)

Submit a two-way task for execution & return a future representing pending task results

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html#submit

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html#submit-java.util.concurrent.Callable-

Overview of the PrimeChecker App

» MainActivity creates a list of futures that store <<Java Class>>
results of concurrently checking primality of _ OMainActivity
“count” random #'s within a range o e
List<Future<PrimeResult>> PrimeResult = InitializeViews():void

: @ setCount(View):void
futures = new Random() @ startOrStopComputations(View):void
. 1ongs (count , = startComputations(int):void
sMAX VALUE - count = interruptComputations():void
—_ ! : @ done():void
SMAX_VALUE) FLJ;SJ roe]; @ printin(String):void

@ onRetainNonConfigurationinstance():Object
<> onDestroy():void

.mapToObj (PrimeCallable: :new)

.map (mRetainedState.mExecutorService: :submit)

.collect (toList ()) ; | Collect results into a list of futures to PrimeResults

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#collect

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#collect-java.util.stream.Collector-

Overview of the PrimeChecker App

<<Java Class>>

» FutureRunnable runs in a background thread & gets ©MainActivity
the results of all futures as they complete il .

@ initializeViews():void

o . @ setCount(View):void
class FutureRunnable implements Runnable { @ startOrStopComputations(View):void
. . @ startComputations(int):void
List<Future<PrimeResult>> @ interruptComputations():void
@ done():void
mFutures; o printin(String):void

@ onRetainNonConfigurationinstance():Object
onDestroy():void

MainActivity mActivity; \

Background < \
Thread _)g

FutureRunnable (MainActivity a,
List<Future<PrimeResult>> f) s —

{ mActivity = a; mFutures = £; } @ FutureRunnable

AcFutureRunnabIe(MainActivity,List<Future<PrimeResuIt>>)
o setActivity(MainActivity):void
@ run():void

22

Overview of the PrimeChecker App

<<Java Class>>

» FutureRunnable runs in a background thread & gets ©MainActivity
the results of all futures as they complete il .

@ initializeViews():void

o . @ setCount(View):void
class FutureRunnable implements Runnable ({ @ startOrStopComputations(View):void
. . @ startComputations(int):void
List<Future<PrimeResult>> @ interruptComputations():void
@ done():void
mFutures; o printin(String):void

@ onRetainNonConfigurationinstance():Object
onDestroy():void

MainActivity mActivity; \

Background <
Thread _)g

FutureRunnable (MainActivity a,
List<Future<PrimeResult>> f) s —

{ mActivity = a; mFutures = £; } @ FutureRunnable

AcFutureRunnabIe(MainActivity,List<Future<PrimeResuIt>>)
o setActivity(MainActivity):void
@ run():void

23

Overview of the PrimeChecker App

<<Java Class>>

» FutureRunnable runs in a background thread & gets ©MainActivity
the results of all futures as they complete il .

@ initializeViews():void

T . @ setCount(View):void
class FutureRunnable implements Runnable { @ startOrStopComputations(View):void
. . @ startComputations(int):void
List<Future<PrimeResult>> @ interruptComputations():void

@ done():void

mFutures; - @ printin(String):void
\ L/SZ' Of futU/‘es tO f@SU/tS Of @ onRetainNonConfigurationinstance():Object

onDestroy():void

PrimeCallable computations 3

MainActivity mActivity; \

Background < \
Thread _)g

FutureRunnable (MainActivity a,
List<Future<PrimeResult>> f) s —

{ mActivity = a; mFutures = £; } @ FutureRunnable

AcFutureRunnabIe(MainActivity,List<Future<PrimeResuIt>>)
o setActivity(MainActivity):void
@ run():void

24

Overview of the PrimeChecker App

<<Java Class>>

» FutureRunnable runs in a background thread & gets ©MainActivity
the results of all futures as they complete il .

@ initializeViews():void

o . @ setCount(View):void
class FutureRunnable implements Runnable { @ startOrStopComputations(View):void
. . @ startComputations(int):void
List<Future<PrimeResult>> @ interruptComputations():void
@ done():void
mFutures; o printin(String):void

Reference baCk to enc/os/ng act/v/ty @ onRetainNonConfigurationinstance():Object

onDestroy():void

P N
~mActivity Q..1
\\\

MainActivity mActivity; \

Background < \
Thread _)g

FutureRunnable (MainActivity a,
List<Future<PrimeResult>> f) s —

{ mActivity = a; mFutures = £; } @ FutureRunnable

AcFutureRunnabIe(MainActivity,List<Future<PrimeResuIt>>)
o setActivity(MainActivity):void
@ run():void

25

Overview of the PrimeChecker App

<<Java Class>>

» FutureRunnable runs in a background thread & gets ©MainActivity
the results of all futures as they complete il .

@ initializeViews():void

o . @ setCount(View):void
class FutureRunnable implements Runnable { @ startOrStopComputations(View):void
. . @ startComputations(int):void
List<Future<PrimeResult>> @ interruptComputations():void
@ done():void
mFutures; o printin(String):void

@ onRetainNonConfigurationinstance():Object
onDestroy():void

MainActivity mActivity; \

Background <
Thread _)g

/ Constructor initializes the fields

FutureRunnable (MainActivity a,
List<Future<PrimeResult>> f) T e
{ mActivity = a; mFutures = £; } SEtureRnnable

AcFutureRunnabIe(MainActivity,List<Future<PrimeResuIt>>)
o setActivity(MainActivity):void
@ run():void

26

Overview of the PrimeChecker App

<<Java Class>>

» FutureRunnable runs in a background thread & gets ©MainActivity
the results of all futures as they complete il .

@ initializeViews():void

Tt — © setCount(View):void
publ ic void run() { Runnable hook method @ startOrStopComputations(View):void

@ startComputations(int):void

mFutures. forEach (future -> { @ interruptComputations():void
PrimeCallable.PrimeResult pr = ggz:telfl)(:;?rii:g):void
re thrOWSupplier (fu ture: : get) . get () ’ 3 g:g:;etxlirgr;(c;:i%nfigurationInstance():Object
7 ~mActivity Q‘:J
if (pr.mSmallestFactor !'= 0) \
rekgrountsS \

else ...});

<<Java Class>>
(® FutureRunnable

AcFutureRunnabIe(MainActivity,List<Future<PrimeResuIt>>)

mActivity.done(); ... o setActivity(MainActivity):void

@ run():void

27

Overview of the PrimeChecker App

<<Java Class>>

» FutureRunnable runs in a background thread & gets ©MainActivity
the results of all futures as they complete il .

@ initializeViews():void
@ setCount(View):void

/ [ter ate thr U a/ / f Utur es o startOrStopComputations(View):void

@ startComputations(int):void

public void run() {

mFutures. forEach (future -> { @ interruptComputations():void
PrimeCallable.PrimeResult pr = Zxﬁg$MWd
re thrOWSuppl ier (future:: ge t) .ge t () ’ 3 g:g:tse::gr;g:i%nﬁgurationInstance():Object
7 ~mActivityNQ<.1
if (pr.mSmallestFactor !'= 0) \\
rekgrountsS \

else ...});

<<Java Class>>
(® FutureRunnable

AcFutureRunnabIe(MainActivity,List<Future<PrimeResuIt>>)

mActivi ty .done () ;e e . o setActivity(MainActivity):void

@ run():void

28

Overview of the PrimeChecker App

<<Java Class>>

» FutureRunnable runs in a background thread & gets OMalnctivity
the results of all futures as they complete e
. o o @ initializeViews():void
@ setCount(View):void
PUbllc void run () { o startOrStopComputations(View):void
@ startComputations(int):void
mFutures. forEach (future -> { 1?interruptCir:wputatigns)():void
PrimeCallable.PrimeResult pr = Zzﬁgﬁﬁ'svﬁlﬂg);void_ | |
rethrOWSupplier (future .. get) . get () ’ oZ:g:t:::;r;(?:/i;nflguratlonInstance():ObJect
7 ~mActivityN\Q..1
if (pr.mSmallestFactor !'= 0) \
Background_>§ \
Thread

else ...});

future:.:get blocks if async processing e
associated with future hasn't completed GFutureRunnable
i X AcFutureRunnabIe(MainActivity,List<Future<PrimeResuIt>>)
mActivi ty .done () ;e e . ?setAt.:tiv.i;y(MainActivity):void

This is an example of the “synchronous future” processing model

Overview of the PrimeChecker App

<<Java Class>>

» FutureRunnable runs in a background thread & gets ©MainActivity
the results of all futures as they complete il .

@ initializeViews():void

e . . @ setCount(View):void
PUbl ic void run () { o startOrStopComputations(View):void
@ startComputations(int):void
mFutures. forEach (future -> { @ interruptComputations():void
. . @ done():void
PrimeCallable.PrimeResult Pr = @ printin(String):void
- . . . @ onRetainNonConfigurationinstance():Object

rethrowSupplier (future: :get) .get () ; enDEstroy0oid

N
~mActivity Q..1
\\\

if (pr.mSmallestFactox!= 0) Y

\
Background < \
Thread _)g

else ...}); | Convertchecked exception
to a runtime exception

<<Java Class>>
(® FutureRunnable

AcFutureRunnabIe(MainActivity,List<Future<PrimeResuIt>>)

mActivi ty .done () ;e e . o setActivity(MainActivity):void

@ run():void

See stackoverflow.com/a/27644392/3312330

https://stackoverflow.com/a/27644392/3312330

Overview of the PrimeChecker App

<<Java Class>>

» FutureRunnable runs in a background thread & gets ©MainActivity
the results of all futures as they complete il .

@ initializeViews():void

T . . @ setCount(View):void
PUbllc void run () { o startOrStopComputations(View):void
@ startComputations(int):void
mFutures. forEach (future -> { @ interruptComputations():void
. . @ done():void
PrimeCallable.PrimeResult Pr = @ printin(String):void
- . . . @ onRetainNonConfigurationinstance():Object
rethrowSupplier (future: :get) .get() ; enDEstroy0oid
P N
~mActivity Q..1
if (pr.mSmallestFactor != 0) \
Back d < \
ek g

else ...});

Get the result from the supplier
<<Java Class>>
(®FutureRunnable
AcFutureRunnabIe(MainActivity,List<Future<PrimeResuIt>>)
mActivi ty. done (), ... o setActivity(MainActivity):void
@ run():void

See docs.oracle.com/javase/8/docs/api/java/util/function/Supplier.html#get

https://docs.oracle.com/javase/8/docs/api/java/util/function/Supplier.html#get--

Overview of the PrimeChecker App

<<Java Class>>

» FutureRunnable runs in a background thread & gets ©MainActivity

the results of all futures as they complete

public void run() {
mFutures. forEach (future -> {
PrimeCallable.PrimeResult pr =

& MainActivity()
onCreate(Bundle):void
@ initializeViews():void
@ setCount(View):void
o startOrStopComputations(View):void
@ startComputations(int):void
@ interruptComputations():void
@ done():void
@ printin(String):void
@ onRetainNonConfigurationinstance():Object

rethrowSupplier (future: :get) .get() ; onDoestroy(:oid

if (pr.mSmallestFactor !'= 0)

eléé....});

Process each result & produce output

mActivity.done() ;

Background <
Thread _)g

<<Java Class>>
(® FutureRunnable

AcFutureRunnabIe(MainActivity,List<Future<PrimeResuIt>>)
o setActivity(MainActivity):void
@ run():void

32

Overview of the PrimeChecker App

<<Java Class>>

» FutureRunnable runs in a background thread & gets ©MainActivity
the results of all futures as they complete il .

@ initializeViews():void

T . . @ setCount(View):void
PUbllc void run () { o startOrStopComputations(View):void
@ startComputations(int):void
mFutures. forEach (future -> { @ interruptComputations():void
. . @ done():void
PrimeCallable.PrimeResult Pr = @ printin(String):void
- . . . @ onRetainNonConfigurationinstance():Object
rethrowSupplier (future: :get) .get() ; enDEstroy0oid
P N
~mActivity Q..1
if (pr.mSmallestFactor != 0) \
Back d < \
ek g

else ...});

Inform MainActivity that we're all done —
/ (®FutureRunnable
AcFutureRunnabIe(MainActivity,List<Future<PrimeResuIt>>)
mActivity.done(); ... S oAy DA o

33

Overview of the PrimeChecker App

« RetainedState contains fields that must be preserved Pt
across runtime configuration changes]
class RetainedState { -
ExecutorService mExecutorService; e e e
FutureRunnable mFutureRunnable; L RN
Thread mThread Z S zzgzgfsglgggs;?ﬁgurationInstance():Object
} onDe;troy():void
/ /® ~mActivityNQ..1
-mRetainedState 0../ \\\
These fields store concurrency-related objects <<Java Class>> j
(®RetainedState

4 RetainedState()

~mFutureRunnabIé‘\\\ 0..1
|
<<Java Class>>
(® FutureRunnable

AcFutureRunnabIe(MainActivity,List<Future<PrimeResuIt>>)
o setActivity(MainActivity):void
@ run():void

34

Overview of the PrimeChecker App

<<Java Class>>

« RetainedState contains fields that must be preserved ©MainActivity

across runtime configuration changes

mRetainedState.mFutureRunnable =
new FutureRunnable (this, futures);

/

FutureRunnable is stored in a field so its state can
be upaated during a runtime configuration change

<

mRetainedState.mThread =
new Thread (mRetainedState
.mFutureRunnable) ;

mRetainedState.mThread.start () ;

& MainActivity()
onCreate(Bundle):void

@ initializeViews():void

@ setCount(View):void

o startOrStopComputations(View):void

@ startComputations(int):void

@ interruptComputations():void

@ done():void

@ printin(String):void

@ onRetainNonConfigurationinstance():Object
onDestroy():void

/ P N
74 ~mActivity 0..1
\

\

f
-mRetainedState |0..Y

<<Java Class>>
(® RetainedState

4 RetainedState()

\
~mFutureRunnable \ 0..1
\

N

<<Java Class>>
(®FutureRunnable

AcFutureRunnabIe(MainActivity,List<Future<PrimeResult>>)
o setActivity(MainActivity):void
@ run():void

See developer.android.com/quide/topics/resources/runtime-changes.html

https://developer.android.com/guide/topics/resources/runtime-changes.html

Overview of the PrimeChecker App

<<Java Class>>

« RetainedState contains fields that must be preserved ©MainActivity

across runtime configuration changes

mRetainedState.mFutureRunnable =
new FutureRunnable (this, futures);

A background thread is started to wait for all
future results to avoid blocking the UI thread

mRetainedState.mThread =
new Thread (mRetainedState
.mFutureRunnable) ;

mRetainedState.mThread.start () ;

& MainActivity()
onCreate(Bundle):void

@ initializeViews():void

@ setCount(View):void

o startOrStopComputations(View):void

= startComputations(int):void

@ interruptComputations():void

@ done():void

@ printin(String):void

@ onRetainNonConfigurationinstance():Object
onDestroy():void

N
~mActivity Q..1

\\

\
Background < \
Thread _)g

<<Jéva Class>>
(® FutureRunnable

AcFutureRunnabIe(MainActivity,List<Future<PrimeResuIt>>)
o setActivity(MainActivity):void
@ run():void

See developer.android.com/training/articles/perf-anr.html

https://developer.android.com/training/articles/perf-anr.html

Overview of the PrimeChecker App

« Android provides hook methods to store & retrieve Aoty
app state across runtime configuration changes R

@ initializeViews():void
@ setCount(View):void

Object onRetainNonConfigurationInstance () e e e
{ return mRetainedState; } L RN
@ printin(String):void
Retained state is loaded/stored : 22E:;figs(?:i;"ﬁg“ram"'"Stance():omem
via Android hook methods F P iy 0L
/ \
-mRetainedState lo./ \\

<<Java Class>>
(® RetainedState

void onCreate(...) {
mRetainedState = (RetainedState)

getLastNonConfigurationInstance() ; ARsisoedRioe)
-mFutureRunnabIe\\\ 0..1
N
1 i 1= <<Java Class>>
if (mRetainedState != null) ({ B e

AcFutureRunnabIe(MainActivity,List<Future<PrimeResult>>)
o setActivity(MainActivity):void
@ run():void

See developer.android.com/reference/android/app/Activity.html#onRetainNonConfigurationInstance()

https://developer.android.com/reference/android/app/Activity.htmlonRetainNonConfigurationInstance()

Evaluating this
PrimeChecker App

38

Evaluating this PrimeChecker App

« ExecutorService version of PrimeChecker app fixes
problems with earlier Executor PrimeChecker

39

Evaluating this PrimeChecker App

 ExecutorService version of PrimeChecker app fixes
problems with earlier Executor PrimeChecker, e.g.

« Two-way semantics of Java callables decouple
PrimeCallable & MainActivity

public class PrimeCallable
implements Callable<PrimeResult> {

MainActivity appears nowhere in PrimeCallable class..

/

public PrimeCallable (long PrimeCandidate) { ... }

public PrimeResult call() {
return new PrimeResult (mPrimeCandidate,

isPrime (mPrimeCandidate)) ;

This decoupling simplifies runtime configuration changes

Evaluating this PrimeChecker App

» ExecutorService version of PrimeChecker app fixes
problems with earlier Executor PrimeChecker, e.g. . T

9223372036854775757 is not prime with smallest factor 149
9223372036854775770 is not prime with smallest factor 2
9223372036854775788 is not prime with smallest factor 2
9223372036854775775 is not prime with smallest factor 5
9223372036854775724 is not prime with smallest factor 2
9223372036854775769 is not prime with smallest factor 31
9223372036854775769 is not prime with smallest factor 31
9223372036854775775 is not prime with smallest factor 5
9223372036854775789 is not prime with smallest factor 11
9223372036854775710 is not prime with smallest factor 2
H H H H 9223372036854775728 is not prime with smallest factor 2
 Lifecycle ope rations enable task interru pt| ons 0225372036354775716 I not rime with st fator 2
9223372036854775718 is not prime with smallest factor 2
9223372036854775787 is not prime with smallest factor 13
9223372036854775735 is not prime with smallest factor 5
9223372036854775737 is not prime with smallest factor 3
9223372036854775714 is not prime with smallest factor 2
9223372036854775775 is not prime with smallest factor 5
9223372036854775733 is not prime with smallest factor 19
9223372036854775779 is not prime with smallest factor 3
9223372036854775796 is not prime with smallest factor 2
9223372036854775771 is not prime with smallest factor 19
9223372036854775780 is not prime with smallest factor 2
9223372036854775803 is not prime with smallest factor 3
9223372036854775800 is not prime with smallest factor 2
9223372036854775735 is not prime with smallest factor 5
9223372036854775748 is not prime with smallest factor 2
9223372036854775767 is not prime with smallest factor 3

void interruptComputations () {
mRetainedState.mExecutorService
.shutdownNow () ;

mRetainedState.mThread.interrupt() ;
mRetainedState
.mExecutorService.awaitTermination
(500, TimeUnit.MILLISECONDS) ;

Shutting down an executor service interrupts a// threads running tasks

Evaluating this PrimeChecker App

» ExecutorService version of PrimeChecker app fixes
problems with earlier Executor PrimeChecker, e.g. . T

9223372036854775757 is not prime with smallest factor 149
9223372036854775770 is not prime with smallest factor 2
9223372036854775788 is not prime with smallest factor 2
9223372036854775775 is not prime with smallest factor 5
9223372036854775724 is not prime with smallest factor 2
9223372036854775769 is not prime with smallest factor 31
9223372036854775769 is not prime with smallest factor 31
9223372036854775775 is not prime with smallest factor 5
9223372036854775789 is not prime with smallest factor 11
9223372036854775710 is not prime with smallest factor 2
H H H H 9223372036854775728 is not prime with smallest factor 2
 Lifecycle ope rations enable task interru pt| ons 0225372036354775716 I not rime with st fator 2
9223372036854775718 is not prime with smallest factor 2
9223372036854775787 is not prime with smallest factor 13
9223372036854775735 is not prime with smallest factor 5
9223372036854775737 is not prime with smallest factor 3
9223372036854775714 is not prime with smallest factor 2
9223372036854775775 is not prime with smallest factor 5
9223372036854775733 is not prime with smallest factor 19
9223372036854775779 is not prime with smallest factor 3
9223372036854775796 is not prime with smallest factor 2
9223372036854775771 is not prime with smallest factor 19
9223372036854775780 is not prime with smallest factor 2
9223372036854775803 is not prime with smallest factor 3
9223372036854775800 is not prime with smallest factor 2
9223372036854775735 is not prime with smallest factor 5
9223372036854775748 is not prime with smallest factor 2
9223372036854775767 is not prime with smallest factor 3

long isPrime (long n) {
if (n > 3)
for (long factor = 2
factor <= n / 2; ++factor)
if (Thread.interrupted()) break;
else if (n / factor * factor == n)
return factor;
return OL;

~e

100

}

The isPrime() method repeatedly checks to see if it's been interrupted

Evaluating this PrimeChecker App

« ExecutorService version of PrimeChecker app fixes
problems with earlier Executor PrimeChecker, e.g.

« Runtime configuration changes handled gracefully

KEEP

CALM

AND

EMBRACE
CHANGE

100000000

tarting primality computations
863137601 is not prime with smallest factor 67
181858090 is not prime with smallest factor 2
074979154 is not prime with smallest factor 2
1870407455 is not prime with smallest factor 5
833235127 is not prime with smallest factor 17
651621695 is not prime with smallest factor 5
1311987041 is not prime with smallest factor 971
703018233 is not prime with smallest factor 3
1055928155 18 not prime with smallest factor 5
833102181 is not prime with smallest factor 3
1030676473 is not prime with smallest factor 619
127457798 is not prime with smallest factor 2
(@5B3326869 is prime
16682593 is not prime with smallest factor 11
(509282196 is not prime with smallest factor 2
755195772 is not prime with smallest factor 2
1320523007 is not prime with smallest facter 37
W587637322 is not prime with smallest factor 2
1766004629 is prime
28824527 is not prime with smallest factor 79
4461966 is not prime with smallest factor 2
1679873625 is not prime with smallest factor 3
139079501 is not prime with smallest factor 11
1699167856 is not prime with smallest factor 2
1563413821 is prime
Finished primality computations

Running tasks execute & update the GUI until they finish or are interrupted

Evaluating this PrimeChecker App

« However, there are still some limitations

fstarting primality computations

me with smallest factor 5
7 is nat prime with smallest factor 17
fa

ot prime with small
rime with smallost fa
15 NOT Prime With smallest factor
 Fa

16682593 Is not prime with sm
nat prime with smallest fa,
with smallest s
re with smallest factor 37
37322 is not prime with smallest factor 2
1766004528 is prime
nat prime with smallest factor 79

Evaluating this PrimeChecker App

« However, there are still some limitations, e.g.
« future::get blocks the thread, even if other futures may have completed

private class FutureRunnable

implements Runnable {

This problem is inherent with the
MainActivity mActivity;

synchronous future” processing mode/

public void run() {
mFutures. forEach (future -> {
PrimeCallable.PrimeResult pr =
rethrowSupplier (future: :get) .get () ;

if (pr.mSmallestFactor != 0)
else
mActivity.done () ;

We fix this problem in an upcoming lesson on “Java ExecutorCompletionService'

Evaluating this PrimeChecker App

» However, there are still some limitations, e.g.

» isPrime() tightly coupled with PrimeCallable Primality checking always

public class PrimeCallable ... { runs, even if results were
long isPrime(long n) { ——— | computed previously
if (n > 3)

for (long factor = 2; factor <= n / 2; ++factor)
if (Thread.interrupted())
break;
else if (n / factor * factor == n)
return factor;

return OL;

This problem is fixed by Memoizer in an upcoming lesson on “Java Futurelask”!

End of Overview of Java
ExecutorService (Part 4)

47

