
The Java ExecutorService Interface

(Part 2)
Douglas C. Schmidt

d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Recognize the powerful features defined in the Java ExecutorService interface

& related interfaces/classes

• Know key methods provided by the
Java ExecutorService

3

Key Methods in the
ExecutorService Interface

(Part 1)

4

Key Methods in the ExecutorService Interface
• ExecutorService can execute

individual tasks
public interface ExecutorService

extends Executor {

// Inherited from Executor

void execute(Runnable command);

<T> Future<T> submit

(Callable<T> task);

...

5

• ExecutorService can execute
individual tasks

• execute() runs one-way
tasks that return void

public interface ExecutorService

extends Executor {

// Inherited from Executor

void execute(Runnable command);

<T> Future<T> submit

(Callable<T> task);

...

Key Methods in the ExecutorService Interface

However, this method isn’t very useful/common in practice

6

• ExecutorService can execute
individual tasks

• execute() runs one-way
tasks that return void

• submit() runs two-way async
tasks that return a value via
a future

public interface ExecutorService

extends Executor {

// Inherited from Executor

void execute(Runnable command);

<T> Future<T> submit

(Callable<T> task);

...

Key Methods in the ExecutorService Interface

This method is the most useful/common in practice

7

• ExecutorService can execute
individual tasks

• execute() runs one-way
tasks that return void

• submit() runs two-way async
tasks that return a value via
a future

• Supports “synchronous
future” processing model

public interface ExecutorService

extends Executor {

// Inherited from Executor

void execute(Runnable command);

<T> Future<T> submit

(Callable<T> task);

...

Key Methods in the ExecutorService Interface

8

• ExecutorService can execute
individual tasks

• execute() runs one-way
tasks that return void

• submit() runs two-way async
tasks that return a value via
a future

• Supports “synchronous
future” processing model

• Future.get() can block until
task completes successfully

public interface ExecutorService

extends Executor {

// Inherited from Executor

void execute(Runnable command);

<T> Future<T> submit

(Callable<T> task);

...

Key Methods in the ExecutorService Interface

9

• ExecutorService can execute
individual tasks

• execute() runs one-way
tasks that return void

• submit() runs two-way async
tasks that return a value via
a future

• Supports “synchronous
future” processing model

• Future.get() can block until
task completes successfully

• After which point get() returns the task’s result

public interface ExecutorService

extends Executor {

// Inherited from Executor

void execute(Runnable command);

<T> Future<T> submit

(Callable<T> task);

...

Key Methods in the ExecutorService Interface

10

• ExecutorService can execute
individual tasks

• execute() runs one-way
tasks that return void

• submit() runs two-way async
tasks that return a value via
a future

• submit() can also run one-way
async tasks that return no value

public interface ExecutorService

extends Executor {

// Inherited from Executor

void execute(Runnable command);

<T> Future<T> submit

(Callable<T> task);

<T> Future<T> submit

(Runnable task);

...

Key Methods in the ExecutorService Interface

11

• ExecutorService can execute
individual tasks

• execute() runs one-way
tasks that return void

• submit() runs two-way async
tasks that return a value via
a future

• submit() can also run one-way
async tasks that return no value

• It is possible to cancel this
computation, however

public interface ExecutorService

extends Executor {

// Inherited from Executor

void execute(Runnable command);

<T> Future<T> submit

(Callable<T> task);

<T> Future<T> submit

(Runnable task);

...

Key Methods in the ExecutorService Interface

12

public interface ExecutorService

extends Executor {

...

<T> List<Future<T>> invokeAll

(Collection<? extends

Callable<T>> tasks) ...;

<T> T invokeAny

(Collection<? extends

Callable<T>> tasks) ...;

<T> T invokeAny(Collection<?

extends Callable<T>> tasks,

long timeout, TimeUnit unit)

...; ...

• ExecutorService can also execute
groups of tasks

Key Methods in the ExecutorService Interface

13

• ExecutorService can also execute
groups of tasks

• Returns a list of futures
when all tasks complete

public interface ExecutorService

extends Executor {

...

<T> List<Future<T>> invokeAll

(Collection<? extends

Callable<T>> tasks) ...;

<T> T invokeAny

(Collection<? extends

Callable<T>> tasks) ...;

<T> T invokeAny(Collection<?

extends Callable<T>> tasks,

long timeout, TimeUnit unit)

...; ...

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html#invokeAll

All futures returned in
this list are “done”!

Key Methods in the ExecutorService Interface

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html#invokeAll-java.util.Collection-

14

• ExecutorService can also execute
groups of tasks

• Returns a list of futures
when all tasks complete

• Return the result of one
successful completion

public interface ExecutorService

extends Executor {

...

<T> List<Future<T>> invokeAll

(Collection<? extends

Callable<T>> tasks) ...;

<T> T invokeAny

(Collection<? extends

Callable<T>> tasks) ...;

<T> T invokeAny(Collection<?

extends Callable<T>> tasks,

long timeout, TimeUnit unit)

...; ...

Useful for concurrent algorithms that just want the result that completes first

Key Methods in the ExecutorService Interface

15

• ExecutorService can also execute
groups of tasks

• Returns a list of futures
when all tasks complete

• Return the result of one
successful completion

• Cancel uncompleted tasks

public interface ExecutorService

extends Executor {

...

<T> List<Future<T>> invokeAll

(Collection<? extends

Callable<T>> tasks) ...;

<T> T invokeAny

(Collection<? extends

Callable<T>> tasks) ...;

<T> T invokeAny(Collection<?

extends Callable<T>> tasks,

long timeout, TimeUnit unit)

...; ...

Key Methods in the ExecutorService Interface

16

• ExecutorService can also execute
groups of tasks

• Returns a list of futures
when all tasks complete

• Return the result of one
successful completion

• Cancel uncompleted tasks

• Ignore other completed
task results

public interface ExecutorService

extends Executor {

...

<T> List<Future<T>> invokeAll

(Collection<? extends

Callable<T>> tasks) ...;

<T> T invokeAny

(Collection<? extends

Callable<T>> tasks) ...;

<T> T invokeAny(Collection<?

extends Callable<T>> tasks,

long timeout, TimeUnit unit)

...; ...

Key Methods in the ExecutorService Interface

17

public interface ExecutorService

extends Executor {

...

<T> List<Future<T>> invokeAll

(Collection<? extends

Callable<T>> tasks) ...;

<T> T invokeAny

(Collection<? extends

Callable<T>> tasks) ...;

<T> T invokeAny(Collection<?

extends Callable<T>> tasks,

long timeout, TimeUnit unit)

...; ...

• ExecutorService can also execute
groups of tasks

• Returns a list of futures
when all tasks complete

• Return the result of one
successful completion

Don’t modify the collection
param while invokeAll() or
invokeAny() are running!!!

Key Methods in the ExecutorService Interface

18

public interface ExecutorService

extends Executor {

...

<T> List<Future<T>> invokeAll

(Collection<? extends

Callable<T>> tasks) ...;

<T> T invokeAny

(Collection<? extends

Callable<T>> tasks) ...;

<T> T invokeAny(Collection<?

extends Callable<T>> tasks,

long timeout, TimeUnit unit)

...; ...

• ExecutorService can also execute
groups of tasks

• Returns a list of futures
when all tasks complete

• Return the result of one
successful completion

These methods block the calling
thread until they are finished,
which may be non-intuitive..

Key Methods in the ExecutorService Interface

19

Key Methods in the
ExecutorService Interface

(Part 2)

20

• An ExecutorService client can
initiate shutdown operations to
manage its lifecycle

public interface ExecutorService

extends Executor {

...

void shutdown();

List<Runnable> shutdownNow();

...

Key Methods in the ExecutorService Interface

21

• An ExecutorService client can
initiate shutdown operations to
manage its lifecycle

• Perform “orderly shutdown”
that completes active tasks

public interface ExecutorService

extends Executor {

...

void shutdown();

List<Runnable> shutdownNow();

...

Key Methods in the ExecutorService Interface

22

• An ExecutorService client can
initiate shutdown operations to
manage its lifecycle

• Perform “orderly shutdown”
that completes active tasks

• But ignores new tasks

public interface ExecutorService

extends Executor {

...

void shutdown();

List<Runnable> shutdownNow();

...

Key Methods in the ExecutorService Interface

23

• An ExecutorService client can
initiate shutdown operations to
manage its lifecycle

• Perform “orderly shutdown”
that completes active tasks

• Attempt to cancel active tasks
& don’t process waiting tasks

public interface ExecutorService

extends Executor {

...

void shutdown();

List<Runnable> shutdownNow();

...

Key Methods in the ExecutorService Interface

24

• An ExecutorService client can
initiate shutdown operations to
manage its lifecycle

• Perform “orderly shutdown”
that completes active tasks

• Attempt to cancel active tasks
& don’t process waiting tasks

• Activate tasks are cancelled by
posting an interrupt request to
executor thread(s)

public interface ExecutorService

extends Executor {

...

void shutdown();

List<Runnable> shutdownNow();

...

Key Methods in the ExecutorService Interface

See docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html

Remember that all these Java
interrupt requests are “voluntary”!!

https://docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html

25

• An ExecutorService client can
initiate shutdown operations to
manage its lifecycle

• Perform “orderly shutdown”
that completes active tasks

• Attempt to cancel active tasks
& don’t process waiting tasks

• Activate tasks are cancelled by
posting an interrupt request to
executor thread(s)

• Returns waiting tasks

public interface ExecutorService

extends Executor {

...

void shutdown();

List<Runnable> shutdownNow();

...

Key Methods in the ExecutorService Interface

26

• ExecutorService can query status
of a shutdown, as well as wait for
termination to finish

public interface ExecutorService

extends Executor {

...

boolean isShutdown();

boolean isTerminated();

boolean awaitTermination

(long timeout,

TimeUnit unit) ...;

Key Methods in the ExecutorService Interface

27

• ExecutorService can query status
of a shutdown, as well as wait for
termination to finish

• True if Executor shut down

public interface ExecutorService

extends Executor {

...

boolean isShutdown();

boolean isTerminated();

boolean awaitTermination

(long timeout,

TimeUnit unit) ...;

Key Methods in the ExecutorService Interface

28

• ExecutorService can query status
of a shutdown, as well as wait for
termination to finish

• True if Executor shut down

• True if all tasks completed
after shut down

public interface ExecutorService

extends Executor {

...

boolean isShutdown();

boolean isTerminated();

boolean awaitTermination

(long timeout,

TimeUnit unit) ...;

Key Methods in the ExecutorService Interface

29

• ExecutorService can query status
of a shutdown, as well as wait for
termination to finish

• True if Executor shut down

• True if all tasks completed
after shut down

• Blocks until all tasks complete

public interface ExecutorService

extends Executor {

...

boolean isShutdown();

boolean isTerminated();

boolean awaitTermination

(long timeout,

TimeUnit unit) ...;

Key Methods in the ExecutorService Interface

shutdownNow() may reduce blocking time for awaitTermination()

30

• ExecutorService can query status
of a shutdown, as well as wait for
termination to finish

• True if Executor shut down

• True if all tasks completed
after shut down

• Blocks until all tasks complete

public interface ExecutorService

extends Executor {

...

boolean isShutdown();

boolean isTerminated();

boolean awaitTermination

(long timeout,

TimeUnit unit) ...;

See en.wikipedia.org/wiki/Barrier_(computer_science)

Key Methods in the ExecutorService Interface

shutdown*() & awaitTermination()
provide barrier synchronization

https://en.wikipedia.org/wiki/Barrier_(computer_science)

31

End of Overview of Java
ExecutorService (Part 2)

