The Java ExecutorService Interface

[Part 2)

Douglas C. Schmidt
i.schmidt@vanderbiit.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software
E 7 Integrated Systems
Vanderhilt University

Nashville, Tennessee, USA



mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Know key methods provided by the
Java ExecutorService

<<Java Interface==
&9 ExecutorService

@ shutdown():void

@ shutdownNow():List<Runnable>

@ isShutdown():boolean

@ isTerminated():boolean

@ awaitTermination(long, TimeUnit):boolean

@ submit(Callable<T=>):Future<T>

@ submit(Runnable, T):Future<T>

@ submit(Runnable):Future<?>

@ invokeAll(Collection<? extends Callable<T=>):List<Future<T>>
@ invokeAny(Collection<? extends Callable<T>>)

@ invokeAny(Collection<? extends Callable<T>> long, TimeUnit)




Key Methods in the
ExecutorService Interface
(Part 1)

3



Key Methods in the ExecutorService Interface

« ExecutorService can execute public interface ExecutorService

individual tasks extends Executor {
// Inherited from Executor
void execute (Runnable command) ;

<T> Future<T> submit
(Callable<T> task);




Key Methods in the ExecutorService Interface

« ExecutorService can execute public interface ExecutorService

individual tasks extends Executor {
// Inherited from Executor
void execute (Runnable command) ;

« execute() runs one-way
tasks that return void

<T> Future<T> submit
(Callable<T> task);

However, this method isn't very useful/common in practice




Key Methods in the ExecutorService Interface

« ExecutorService can execute public interface ExecutorService

individual tasks extends Executor {
// Inherited from Executor
void execute (Runnable command) ;

« submit() runs two-way async <T> Future<T> submit
tasks that return a value via (Callable<T> task) ;
a future

a N\

This method is the most useful/common in practice




Key Methods in the ExecutorService Interface

« ExecutorService can execute public interface ExecutorService

individual tasks extends Executor {
// Inherited from Executor
void execute (Runnable command) ;

« submit() runs two-way async <T> Future<T> submit
tasks that return a value via (Callable<T> task) ;
a future

« Supports “synchronous
future” processing model




Key Methods in the ExecutorService Interface

« ExecutorService can execute public interface ExecutorService

individual tasks extends Executor {
// Inherited from Executor

void execute (Runnable command) ;

« submit() runs two-way async <T> Future<T> submit
tasks that return a value via (Callable<T> task) ;
a future

 Future.get() can block until
task completes successfully




Key Methods in the ExecutorService Interface

« ExecutorService can execute public interface ExecutorService

individual tasks extends Executor {
// Inherited from Executor

void execute (Runnable command) ;

« submit() runs two-way async <T> Future<T> submit
tasks that return a value via (Callable<T> task) ;
a future

 Future.get() can block until
task completes successfully

 After which point get() returns the task’s result

9



Key Methods in the ExecutorService Interface

« ExecutorService can execute public interface ExecutorService
individual tasks extends Executor {
// Inherited from Executor
void execute (Runnable command) ;

<T> Future<T> submit
(Callable<T> task);

. <T> Future<T> submit
« submit() can also run one-way (Runnable task) ;

async tasks that return no value

10



Key Methods in the ExecutorService Interface

« ExecutorService can execute public interface ExecutorService
individual tasks extends Executor {
// Inherited from Executor
void execute (Runnable command) ;

<T> Future<T> submit
(Callable<T> task);

. <T> Future<T> submit
« submit() can also run one-way (Runnable task) ;

async tasks that return no value

« It is possible to cancel this
computation, however

11



Key Methods in the ExecutorService Interface

- ExecutorService can also execute public interface ExecutorService
groups of tasks extends Executor {

<T> List<Future<T>> invokelAll
(Collection<? extends
Callable<T>> tasks) ...;

<T> T invokeAny
(Collection<? extends
Callable<T>> tasks) ...;

<T> T invokeAny (Collection<?
extends Callable<T>> tasks,
long timeout, TimeUnit unit)

.
LI 4

12



Key Methods in the ExecutorService Interface

- ExecutorService can also execute public interface ExecutorService
groups of tasks extends Executor {

» Returns a list of futures
when all tasks complete

<T> List<Future<T>> invokeAll
(Collection<? extends

Callable<T>> tasks) ...;
///////:;; T invokeAny

All futures returned in (Collection<? extends
this list are "done”! Callable<T>> tasks) ...;

<T> T invokeAny (Collection<?
extends Callable<T>> tasks,
long timeout, TimeUnit unit)

.
LI 4

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService. html#invokeAll



https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html#invokeAll-java.util.Collection-

Key Methods in the ExecutorService Interface

- ExecutorService can also execute public interface ExecutorService
groups of tasks extends Executor {

<T> List<Future<T>> invokelAll
(Collection<? extends
e Return the result of one Callable<T>> tasks) ...;
successful completion
<T> T invokeAny
(Collection<? extends
Callable<T>> tasks) ...;

<T> T invokeAny (Collection<?
extends Callable<T>> tasks,
long timeout, TimeUnit unit)

.
LI 4

‘ Useful for concurrent algorithms that just want the result that completes first |




Key Methods in the ExecutorService Interface

- ExecutorService can also execute public interface ExecutorService
groups of tasks extends Executor {

<T> List<Future<T>> invokeAll
(Collection<? extends
« Return the result of one Callable<T>> tasks) ...;

successful completion

« Cancel uncompleted tasks <T> T invokeAny

(Collection<? extends
Callable<T>> tasks) ...;

<T> T invokeAny (Collection<?
extends Callable<T>> tasks,
long timeout, TimeUnit unit)

.
LI 4

15



Key Methods in the ExecutorService Interface

- ExecutorService can also execute public interface ExecutorService
groups of tasks extends Executor {

<T> List<Future<T>> invokeAll
(Collection<? extends
e Return the result of one Callable<T>> tasks) ...;
successful completion
<T> T invokeAny

(Collection<? extends

- Ignore other completed Callable<T>> tasks) ...;
task results
<T> T invokeAny (Collection<?
extends Callable<T>> tasks,
long timeout, TimeUnit unit)

.
LI 4

16



Key Methods in the ExecutorService Interface

- ExecutorService can also execute public interface ExecutorService
groups of tasks extends Executor {

<T> List<Future<T>> invokelAll
(Collection<? extends
Callable<T>> tasks) ...;

<T> T invokeAny
(Collection<? extends

Don't modify the collection / Callable<T>> tasks) ...;

param while invokeAll() or
invokeAny() are running!!!

<T> T invokeAny (Collection<?
extends Callable<T>> tasks,
long timeout, TimeUnit unit)

f

.
LI 4

17



Key Methods in the ExecutorService Interface

- ExecutorService can also execute public interface ExecutorService
groups of tasks extends Executor {

<T> List<Future<T>> invokelAll
(Collection<? extends
Callable<T>> tasks) ...;

<T> T invokeAny
(Collection<? extends

Callable<T>> tasks) ...;
These methods block the calling ——1__

thread until they are finished, <T> T invokeAny (Collection<?

which may be non-intuitive.. extends Callable<T>> tasks,
long timeout, TimeUnit unit)

.
LI 4

18



Key Methods in the
ExecutorService Interface
(Part 2)

19



Key Methods in the ExecutorService Interface

« An ExecutorService client can public interface ExecutorService
initiate shutdown operations to extends Executor {
manage its lifecycle

void shutdown|() ;

List<Runnable> shutdownNow () ;

20



Key Methods in the ExecutorService Interface

An ExecutorService client can
initiate shutdown operations to
manage its lifecycle

° Perform “Ol‘del‘|y ShUtdOWﬂ" void shutdown () ;
that completes active tasks

O

public interface ExecutorService
extends Executor {

List<Runnable> shutdownNow () ;

Shut Down

21



Key Methods in the ExecutorService Interface

« An ExecutorService client can
initiate shutdown operations to
manage its lifecycle

° Perform “Ol‘del‘|y ShUtdOWﬂ" void shutdown () ;
that completes active tasks

« But ignores new tasks
‘ \ - -

public interface ExecutorService
extends Executor {

List<Runnable> shutdownNow () ;




Key Methods in the ExecutorService Interface
« An ExecutorService client can
initiate shutdown operations to
manage its lifecycle

public interface ExecutorService
extends Executor {

void shutdown () ;

List<Runnable> shutdownNow () ;
« Attempt to cancel active tasks

& don't process waiting tasks

23



Key Methods in the ExecutorService Interface

« An ExecutorService client can
initiate shutdown operations to
manage its lifecycle

public interface ExecutorService
extends Executor {

void shutdown () ;

List<Runnable> shutdownNow () ;
« Attempt to cancel active tasks

& don’t process waiting tasks

« Activate tasks are cancelled by

posting an interrupt request to
executor thread(s)

Remember that all these Java
Interrupt requests are “voluntary’!!

See docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.htmil



https://docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html

Key Methods in the ExecutorService Interface

« An ExecutorService client can
initiate shutdown operations to
manage its lifecycle

public interface ExecutorService
extends Executor {

void shutdown () ;

List<Runnable> shutdownNow () ;
« Attempt to cancel active tasks

& don’t process waiting tasks

« Returns waiting tasks

25



Key Methods in the ExecutorService Interface

 ExecutorService can query status public interface ExecutorService
of a shutdown, as well as wait for extends Executor {
termination to finish

boolean isShutdown () ;
boolean isTerminated() ;
boolean awaitTermination

(long timeout,
TimeUnit unit) ...;

26



Key Methods in the ExecutorService Interface

 ExecutorService can query status public interface ExecutorService
of a shutdown, as well as wait for extends Executor {

termination to finish
* True if Executor shut down

boolean isShutdown () ;
boolean isTerminated() ;
boolean awaitTermination

(long timeout,
TimeUnit unit) ...;

27



Key Methods in the ExecutorService Interface

 ExecutorService can query status public interface ExecutorService
of a shutdown, as well as wait for extends Executor {

termination to finish

boolean isShutdown () ;

« True if all tasks completed boolean isTerminated() ;

after shut down
boolean awaitTermination

(long timeout,
TimeUnit unit) ...;

28



Key Methods in the ExecutorService Interface

 ExecutorService can query status public interface ExecutorService
of a shutdown, as well as wait for extends Executor {

termination to finish

boolean isShutdown () ;
boolean isTerminated() ;
boolean awaitTermination

 Blocks until all tasks complete _
(long timeout,
TimeUnit unit) ...;

shutdownNow() may reduce blocking time for awaitTermination()




Key Methods in the ExecutorService Interface

« ExecutorService can query status public interface ExecutorService
of a shutdown, as well as wait for extends Executor {

termination to finish

boolean isShutdown () ;
boolean isTerminated() ;
boolean awaitTermination

Blocks until all tasks complete :
. (long timeout,
7\\® E‘”‘ B" 2%, n‘v-- TimeUnit unit) ...;

shutdown*() & awaitTermination()
provide barrier synchronization

See en.wikipedia.org/wiki/Barrier (computer science)



https://en.wikipedia.org/wiki/Barrier_(computer_science)

End of Overview of Java
ExecutorService (Part 2)

31



