Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

<<Java Interface>>
& CompletionService<V>

« Recognize the key methods in the

Java CompletionService interface @ submit(Callable<V>)
@ submit(Runnable,V)

@ take()

@ poll()
@ poll(long, TimeUnit)

Learning Objectives in this Part of the Lesson

« Visualize the ExecutorCompletion

Service in action

1.submit (task)

ExecutorCompletionService

S > S5 >

~__—>| execute()
— | Queueing D
submit() Future 2.offer()
' \
2Ly Queueing
Completion
QLeLe Future
Future Woerueue
/ Future
y 7.take() Future ||le—— 6-2dd()

Future

run ()

D

B55g

3.take()
4 .run ()
5.done()

Future ‘\ WorkerThreads
Queueing

Queueing
Future

ThreadPoolExecutor

Key Methods in the
CompletionService Interface

Key Methods in the CompletionService Interface

« The CompletionService interface
only defines a few methods

Interface CompletionService<V>

All Known Implementing Classes:
ExecutorCompletionService

public interface CompletionService<V>

A service that decouples the production of new asynchronous
tasks from the consumption of the results of completed tasks.
Producers submit tasks for execution. Consumers take
completed tasks and process their results in the order they
complete. A CompletionService can for example be used to
manage asynchronous I/O, in which tasks that perform reads
are submitted in one part of a program or system, and then
acted upon in a different part of the program when the reads
complete, possibly in a different order than they were
requested.

Typically, a CompletionService relies on a separate Executor
to actually execute the tasks, in which case the
CompletionService only manages an internal completion
queue. The ExecutorCompletionService class provides an
implementation of this approach.

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionService.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionService.html

Key Methods in the CompletionService Interface

« The CompletionService interface class ExecutorCompletionService<V>
only defines a few methods, e.g. implements CompletionService<V> {

 Submit a task for execution public Future<v>
submit (Callable<V> task) {

public Future<v>
submit (Runnable task,
V result) {

Key Methods in the CompletionService Interface

« The CompletionService interface class ExecutorCompletionService<V>

only defines a few methods, e.g. implements CompletionService<V> {
- Submit a task for execution public Future<v>
submit\(Callable<V> task) {
} Return values of submit()
are typically ignored

public Future<v>
submit (Runnable task,
V result) {

Key Methods in the CompletionService Interface

« The CompletionService interface class ExecutorCompletionService<V>

only defines a few methods, e.g. implements CompletionService<V> {
- Submit a task for execution public Future<V>
« Submit a value-returning submit (Callable<V> task) {

two-way task

T

public Future<v>
submit (Runnable task,
V result) {

Key Methods in the CompletionService Interface

« The CompletionService interface class ExecutorCompletionService<V>

only defines a few methods, e.g. implements CompletionService<V> {
- Submit a task for execution public Future<V>
« Submit a value-returning submit (Callable<V> task) {

two-way task

public Future<v>

public interface Callable<V> ({ submit (Runnable task,
V call() throws Exception; V result) {

}

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Callable.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Callable.html

Key Methods in the CompletionService Interface

« The CompletionService interface class ExecutorCompletionService<V>

only defines a few methods, e.g. implements CompletionService<V> {
- Submit a task for execution public Future<v>
« Submit a value-returning submit (Callable<V> task) {

two-way task

* Provides an “asynchronous
future” processing model
public Future<v>

submit (Runnable task,
V result) {

i.e., no need to block on the future

Key Methods in the CompletionService Interface

« The CompletionService interface class ExecutorCompletionService<V>
only defines a few methods, e.g. implements CompletionService<V> {

 Submit a task for execution public Future<v>
submit (Callable<V> task) {

« Submit a one-way task
that returns nothing

public Future<v>
submit (Runnable task,
V result) {
/* ... */
}

Not as widely used as the two-way callable task

Key Methods in the CompletionService Interface

« The CompletionService interface class ExecutorCompletionService<V>
only defines a few methods, e.g. implements CompletionService<V> {

 Submit a task for execution public Future<v>
submit (Callable<V> task) {

« Submit a one-way task
that returns nothing

public Future<v>
submit (Runnable task,

/I result) {

public interface Runnable { /* ... */
void run() ; }

}

See docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

Key Methods in the CompletionService Interface

- The CompletionService interface class ExecutorCompletionService<V>
only defines a few methods, e.q. implements CompletionService<V> ({

public Future<V> take() ... {

e Retrieve results
}

public Future<V> poll () {

}

These methods access an internal public Future<V> poll (long
blocking gueue containing Queueing timeout, TimeUnit unit) ... {
Futures whose tasks have completed

}

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html

Key Methods in the CompletionService Interface

- The CompletionService interface class ExecutorCompletionService<V>
only defines a few methods, e.g. implements CompletionService<V> ({

public Future<V> take() ... {

» Retrieve results
}

public Future<vV> poll() {

}

After a future is removed
from the internal gueue get()
will never block on it!

public Future<V> poll (long
timeout, TimeUnit unit) ... {

14

Key Methods in the CompletionService Interface

- The CompletionService interface class ExecutorCompletionService<V>
only defines a few methods. e g implements CompletionService<V> {
, €.4.

public Future<V> take() ... {
» Retrieve results

« Block until a future for next
completed task is available &
then retrieve/remove it

}

public Future<v> poll() {

}

public Future<V> poll (long
timeout, TimeUnit unit) ... {

15

Key Methods in the CompletionService Interface

« The CompletionService interface class ExecutorCompletionService<V>
only defines a few methods, e.g. implements CompletionService<V> {

public Future<V> take() ... {

« Retrieve results ...
}

public Future<V> poll() {

« Retrieve/remove a future }
for the next completed task _
or null if none are available public Future<v> poll(long
timeout, TimeUnit unit) ... {

16

Key Methods in the CompletionService Interface

- The CompletionService interface class ExecutorCompletionService<V>
only defines a few methods. e g implements CompletionService<V> ({
, €.0.

public Future<V> take() ... {

» Retrieve results ...
}

public Future<V> poll () {

}

public Future<V> poll (long

]] o] timeout, TimeUnit unit) ... {
« Wait until the specified wait

time if future isn’t available }

17

Visualizing the Java
ExecutorCompletionService

18

Visualizing the Java ExecutorCompletionService

 ExecutorCompletionService uses an Executor to run tasks placed on its internal
blocking queue when they complete

ExecutorCompletionService

Queueing L
submit() 1 Future [~ | execute() run ()
. | N\ 2.offer() m
1.submit (task) take() N

- Queueing > 9%9%
< >¢ 4 95 ' Future
eé geg ~ 7.take () Completion
Queueing WorkerThreads

Queue

\ Future

. 3.take()

1+ th d b t - Future) Queueing
reads submit two | WorkQueue 4.run() Future

way tasks to a thread pool, | ruwre 5.done ()

while 1+ threads handle T Future 6.add ()
results of these tasks Fuwe_le—+— ThreadPoolExecutor

19

Visualizing the Java ExecutorCompletionService

 ExecutorCompletionService uses an Executor to run tasks placed on its internal
blocking queue when they complete

ExecutorCompletionService

A client submits — :
ueueing
a two-way task \ submit) |— Future [=>| execute() run ()

. [N 2.offer() m
1.submit (task) take()

N <
S / / Queueing eéegégeé
eg 95 95 95 - 7. take () Completion Future V\

Queue

Queueing WorkerThreads
Future N\
3.take() - :
Future ueueing
WorkQueue 4-run() Future
Future 5.done ()

Future 6.add ()

Future

«—T— ThreadPoolExecutor

20

Visualizing the Java ExecutorCompletionService

 ExecutorCompletionService uses an Executor to run tasks placed on its internal
blocking queue when they complete

ExecutorCompletionService

i 1
submit() Qgﬁguerlgg —> | execute() run ()
[N 2.offer() m
1.submit (task) take() [N
- Queueing 9%9%
= 9? 4 95 - ompletion Future
%é %g 7o takel) Queue - WorkerThreads
Queueing
Future \
3.take() = :
. T ueuein
The task is converted to Aol WorkQueue 4-Tun() | “riure
a QueueingFuture & = 5.done ()
enqueued for subsequent - 6.add ()
worker thread processing Mue _He—1— ThreadPoolExecutor

21

Visualizing the Java ExecutorCompletionService

 ExecutorCompletionService uses an Executor to run tasks placed on its internal
blocking queue when they complete

ExecutorCompletionService

Queueing L
submit() 1 Future [~ | execute() run ()

1.submit (task) take() 2.offer()

N <
o / / Queueing eéeéégeé
eg 95 95 95 - 7. take () Completion Future V\

Queue

Queueing WorkerThreads
Future \
3.take() = :
Future 4 _run () ueueing
WorkQueue Future
A worker thread in the N | — 5.done()
thread pool dequevesa | | |l owed™ | 6.add()
queueing future & runs it [fuwe_|le—1— ThreadPoolExecutor

22

Visualizing the Java ExecutorCompletionService

 ExecutorCompletionService uses an Executor to run tasks placed on its internal
blocking queue when they complete

ExecutorCompletionService

Queueing L
submit() 1 Future > execute() run ()

1.submit (task) take() 2.offer()

- - Queueing ' 959%
eg ég %g 95 ~ 7.take () Completion e
Queue Queueing WorkerThreads
¥ Future N\
3.take() :
. . Future 4.run() Queueing
When queueing future is — WorkQueue [+ 7 L Future
finished running its result is =
. e 11— ada()
added to the completion | | {7/ ——= o eadPoolE
queue for later processing < el S Gl

23

Visualizing the Java ExecutorCompletionService

 ExecutorCompletionService uses an Executor to run tasks placed on its internal
blocking queue when they complete

ExecutorCompletionService

Queueing L
submit() 1 Future > execute() run ()

1.submit (task) take() 2.offer()

N <
S / / Queueing ééegégeg
eg 95 95 95 - 7. take () Completion Future V\

Queue

Queueing WorkerThreads
Future N\
3.take() :
. Future 4.run() Queueing
A client thread gets completed —— WorkQueue 2+ % Future
! .done ()

tasks from competion gqueue

Future 6 .add
& then processes them aad()

Future

«—T— ThreadPoolExecutor

24

End of Java Executor
CompletionService:
Key Methods

25

