Douglas C. Schmidt
@ d.schmidt@uandernilt.edu
- www.dre.vanderhilt.edu/~schmidt

E ’ Institute for Software
Integrated Systems
Vanderbilt University

Nashuille, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

I will adopt Best Bractices
I will adopt Best Prachices
I will adogt Best Prachices
1 wiell adopt Best Crachice:
I will adopt Best Practices
1 will adopt Best Brachices
] will adopt Best Practices

I will adopt Best CGrachices
] will adopt Best Practices
I will adopt Best Practices
I will adopt Best Frachices

« Appreciate ConditionObject usage
considerations

Java ConditionObject
Usage Considerations

Java ConditionObject Usage Considerations

 ConditionObject is a highly flexible synchronization mechanism

-
lock T3?

7 &
Tl

A

Cond Critical Cond
0bj1 Section Objz

Java ConditionObject Usage Considerations

 ConditionObject is a highly flexible synchronization mechanism

 Allows threads to suspend & resume their lock *?
execution based on shared state Ts

T,
Cond Critical Cond
0bj1 Section Objz

Thread T, accesses
the critical section,
while thread T, waits

e.g. threads T, & T, can take turns sharing a critical section

Java ConditionObject Usage Considerations

 ConditionObject is a highly flexible synchronization mechanism

 Allows threads to suspend & resume their lock *?
execution based on shared state Ts

Cond Critical Cond
0bj1 Section Objz

Thread T, accesses
the critical section,
while thread T, waits

e.g. threads T, & T, can take turns sharing a critical section

Java ConditionObject Usage Considerations

 ConditionObject is a highly flexible synchronization mechanism

-
lock T3Z

« A user object can define - o
multiple ConditionObjects T

Cond Critical Cond
Obj . Section Obj2

Java ConditionObject Usage Considerations

 ConditionObject is a highly flexible synchronization mechanism

-
lock T3Z

« A user object can define . -
multiple ConditionObjects T

 Each ConditionObject
can provide a separate
“wait set”

Cond Critical
Obj . Section

Java ConditionObject Usage Considerations

« However, a ConditionObject must be used carefully to avoid problems

Java ConditionObject Usage Considerations

« However, a ConditionObject must be used carefully to avoid problems

o It sho_uld (almos_t) always public class
be waited upon in a loop ArrayBlockingQueue<E>

public E take() ... {
final Reentrantlock lock =
this.lock;
lock.lockInterruptibly () ;
try {
while (count == 0)
notEmpty.await() ;
return extract() ;
} finally {
lock.unlock () ;
}
}

10

Java ConditionObject Usage Considerations

« However, a ConditionObject must be used carefully to avoid problems

« It should (almost) always public class

be waited upon in a loop ArrayBlockingQueue<E>

« (Re)test state that's being waited

for since it may change due to R
public E take() ... {

non-determinism of concurrency _
final ReentrantLock lock =
this.lock;
lock.lockInterruptibly () ;
try {
while (count == 0)

notEmpty.await() ;
return extract() ;
} finally {
lock.unlock () ;

}

See docs.oracle.com/javase/tutorial/essential/concurrency/quardmeth.html

http://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html

Java ConditionObject Usage Considerations

« However, a ConditionObject must be used carefully to avoid problems

o It should (almost) always

_ _ public class
be waited upon in a loop

ArrayBlockingQueue<E>

public E take() ... {

_ _ final ReentrantLock lock =
» Guard against spurious wakeups this.lock:;
lock.lockInterruptibly () ;
try {
while (count == 0)

notEmpty.await() ;
return extract() ;
} finally {
lock.unlock () ;
}

} A thread might be awoken from
its waiting state even though
no thread signaled the CO

See en.wikipedia.org/wiki/Spurious wakeup

http://en.wikipedia.org/wiki/Spurious_wakeup

Java ConditionObject Usage Considerations

« However, a ConditionObject must be used carefully to avoid problems

« It is always used in
conjunction with a lock

Cond Critical Cond
Obj) Section Objz

13

Java ConditionObject Usage Considerations

« However, a ConditionObject must be used carefully to avoid problems

« It is always used in
conjunction with a lock

* Needed to avoid the
“lost wakeup problem” !

Cond Critical Cond
Obj) Section Objz

» A thread calls signal() or signalAll()
» Another thread is between the test of the condition & the call to await()
» No threads are waiting

See docs.oracle.com/cd/E19253-01/816-5137/sync-30

https://docs.oracle.com/cd/E19253-01/816-5137/sync-30/index.html

Java ConditionObject Usage Considerations

« However, a ConditionObject must be used carefully to avoid problems

lock 2
'3
- It is always used in g
conjunction with a lock 2
« await() internally releases ! IR
& reacquires its associated ?? T
lock! A L *
Cond Critical Cond
Obj1 Section Objz

15

Java ConditionObject Usage Considerations

« However, a ConditionObject must be used carefully to avoid problems

« Choosing between signal()
& signalAll() can be subtle

16

Java ConditionObject Usage Considerations

« However, a ConditionObject must be used carefully to avoid problems

« Choosing between signal()
& signalAll() can be subtle

 Using signal() is more
efficient & avoids the
“Thundering Herd” problem..

See en.wikipedia.org/wiki/Thundering herd problem

https://en.wikipedia.org/wiki/Thundering_herd_problem

Java ConditionObject Usage Considerations

« However, a ConditionObject must be used carefully to avoid problems

« Choosing between signal()
& signalAll() can be subtle

Uniform Only one condition expression that

waiters await() is waiting for is associated
with the ConditionObject wait set
& each thread executes the same
logic when returning from await()

One-in & A signal() on the ConditionObject
one-out enables at most one thread to
proceed

Conditions under which signal() can be used

The implementation of

ArrayBlocking
Queue
put()
take()
<<uses>> <<uses>>
2
ConditionObject Reentrant
await() uses Lock
signal() lock()
signalAll() unlock()
newCondition()

Java ArrayBlockingQueue
demonstrates this issue

See earlier discussion in “Java ConditionObject: Example Application’”

Java ConditionObject Usage Considerations

« However, a ConditionObject mu

« Choosing between signal()
& signalAll() can be subtle

ArrayBlocking
Queue

put()

st be used carefully to avoid problems

Uniform Only one condition expression that
waiters await() is waiting for is associated

with the ConditionObject wait set
& each thread executes the same
logic when returning from await()

One-in & A signal() on the ConditionObject
one-out enables at most one thread to
proceed

Conditions under which signal() can be used

—~

2

mm0~\\\\\$\\\\\\\\\\\\ public E take() ... {
<<uses>> 9 Q <<uses>> L

while (count == 0)

notEmpty.await () ;

ConditionObject Reentrant
await() uses Lock
signal() lock()
signalAll() unlock()

newCondition

return extract():;

() }

—

See earlier discussion in “Java ConditionObject: Example Application’”

Java ConditionObject Usage Considerations

« However, a ConditionObject must be used carefully to avoid problems

« Choosing between signal()
& signalAll() can be subtle

Queue

ArrayBlocking

2

put()
 ’ - - -
take() private void insert(E x) {
<<uses>> 9 Q <<uses>> items[putIndex] = x;

Uniform Only one condition expression that

waiters await() is waiting for is associated
with the ConditionObject wait set
& each thread executes the same
logic when returning from await()

One-in & A signal() on the ConditionObject

one-out enables at most one thread to
hroceed

Conditions under which signal() can be used

putIndex = inc(putlIndex);
++count;

ConditionObject Reentrant
await() uses Lock
signal() lock()
signalAll() unlock()

newCondition()

notEmpty.signal () ;

See earlier discussion in “Java ConditionObject: Example Application’”

Java ConditionObject Usage Considerations

« However, a ConditionObject mu

« Choosing between signal()
& signalAll() can be subtle

st be used carefully to avoid problems

Uniform Only one condition expression that

waiters await() is waiting for is associated
with the ConditionObject wait set
& each thread executes the same

logic when returning from wait()

One-in & A signal() on the ConditionObject
one-out enables at most one thread to
proceed

Conditions under which signal() can be used

Java ArrayBlockingQueue

ArrayBlocking
Queue
put()
take()
<<uses>> <<uses>>
2
ConditionObject Reentrant
await() uses Lock
signal() lock()
signalAll() unlock()
newCondition()

satisfies both conditions

21

Java ConditionObject Usage Considerations

« However, a ConditionObject must be used carefully to avoid problems

<< Java Class=>=

(® Object

@ Object()

& notify()-void

& notifyAll()-void

& wait(long)-void

& wait(long.int)-void
- ConditionObject inherits the o wait()-void

wait(), notify(), & notifyAll() /\

methods from Java Object!!

<< lava Class>>

(® ConditionObject

& ConditionObject()

& await()-void

& awaitUninterruptibhy{)-void

& await{long, TimeUnit): boolean
& signal()-void

& signalAll)-void

Do not mix & match these methods!!!

Java ConditionObject Usage Considerations

« Name condition object fields to reflect their usage
->
lock T32i

not Critical not
Empty || “etor Full

Used to wait until the

condition is not empty Used to wait until the

condition is not full

23

Java ConditionObject Usage Considerations

« ConditionObject is used in java.util.concurrent & java.util.concurrent.locks

package Added in API level 1
java.util.concurrent.locks

Interfaces and classes providing a framework for locking and waiting for
conditions that is distinct from built-in synchronization and monitors.
The framework permits much greater flexibility in the use of locks and
conditions, at the expense of more awkward syntax.

The Lock interface supports locking disciplines that differ in semantics
(reentrant, fair, etc), and that can be used in non-block-structured
contexts including hand-over-hand and lock reordering algorithms. The
main implementation is ReentrantLock.

package Added in API level 1
java.util.concurrent

Utility classes commonly useful in concurrent programming. This package includes a few small
standardized extensible frameworks, as well as some classes that provide useful functionality and are
otherwise tedious or difficult to implement. Here are brief descriptions of the main components. See also

the java.util.concurrent.locks and java.util.concurrent.atomic packages.

24

Java ConditionObject Usage Considerations

« ConditionObject is used in java.util. concurrent & Java ut|I concurrent Iocks

« However, it's typically hidden
within higher-level abstractions

25

Java ConditionObject Usage Considerations

« ConditionObject is used in java.util.concurrent & java.util.concurrent.locks
« However, it's typically hidden

within higher-level abstractions Consumer Producer
- e.g., ArrayBlockingQueue & =\ / _
LinkedBlockingQueue g —>§
take() \ % put()
ArrayBlocking
Queue
put()
take()

uses ’ Q uses
2

ConditionObject |
await() uses |ReentrantLock
signal() | lock()
signalAll() unlock()

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ArrayBlockingQueue.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ArrayBlockingQueue.html

End of Java ConditionObject:
Usage Considerations

27

