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Learning Objectives in this Part of the Lesson

Consumer Producer

« Recognize how condition variables
are often applied in practice
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Learning Objectives in this Part of the Lesson

« Be aware of a human known use
of condition variables




Applying Condition
Variables in Practice




Applying Condltlon Varlables in Practlce

« CVs are powerful, but
can be hard to grok &
apply correctly

See en.wikipedia.org/wiki/Grok
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Applying Condition Varia

hles in Practice

« CVs are powerful, but
can be hard to grok &
apply correctly, e.qg.

« The protocol for using
CVs involves several
“moving parts”
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Applying Condition Variables in Practice
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Applying Condition Variables in Practice

« CVs are powerful, but
can be hard to grok &

apply correctly, e.qg.

« The non-determinism
of concurrency is tricky
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Applying Condltlon Varlables in Practice

« CVs are powerful, but

can be hard to grok &
apply correctly, e.qg.

 The non-determinism
of concurrency is tricky

* i.e., a loop may be
needed to ensure a
resource is available
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See stackoverflow.com/a/38313778
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Applying Condition Varlables in Practlce

« CVs are therefore often not used
directly by apps, but instead are
“hidden” within other abstractions
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Applying Condition Variables in Practice

« CVs are therefore often not used
directly by apps, but instead are Additional Frameworks & Languages
“hidden” within other abstractions

« CVs form the basis for higher-
level synchronizers in Java '

Threading & Synchronization Packages

Java Virtual Machine

Operating System Kernel

System Libraries

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/
locks/AbstractQueuedSynchronizer.ConditionObject.html



https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/AbstractQueuedSynchronizer.ConditionObject.html

Applying Condition Varlables |n Practlce
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Applying Condition Variables in Practice

« CVs are therefore often not used

directly by apps, but instead are Consumer

“hidden” within other abstractions

« CVs form the basis for higher-
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See upcoming discussion in part 5 of “Java ConditionObject’




Applying Condition Variables in Practice

« CVs are therefore often not used

—
directly by apps, but instead are § - ‘I Ta
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Running
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« Java built-in monitor objects

See upcoming lesson on “Java Built-in Monitor Objects”




Applying Condition Variables in Practice

« CVs are therefore often not used

directly by apps, but instead are
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« The Monitor Object pattern
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See www.dre.vanderbilt.edu/~schmidt/PDF/monitor.pdf
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Human Known Use
of Condition Variables
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Human Known Uses of Condition Variables

« A human known use is a pizza delivery protocol
« Must acquire both the pizza & the keys to deliver the pizza
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End of Java ConditionObject
(Part 2)
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