Java ConditionObject (Part 2)

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderbilt University
Nashuille, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

Consumer Producer

« Recognize how condition variables
are often applied in practice

uses ’ Q uses
2

<\ /
take() N % put()

=

ArrayBlocking
Queue

put()
take()

ConditionVariable

await()
signal()
signalAll()

USes Lock

lock()
unlock()

Learning Objectives in this Part of the Lesson

« Be aware of a human known use
of condition variables

Applying Condition
Variables in Practice

Applying Condltlon Varlables in Practlce

« CVs are powerful, but
can be hard to grok &
apply correctly

See en.wikipedia.org/wiki/Grok

https://en.wikipedia.org/wiki/Grok

Applying Condition Varia

hles in Practice

« CVs are powerful, but
can be hard to grok &
apply correctly, e.qg.

« The protocol for using
CVs involves several
“moving parts”

CAUTION|
BE ALERT!!
MOVING PARTS

iClient Client Monitor lonjtor Monitor
Thread1 Thread2 Object Lock Condition
| sync_method1() | acquire()
—F
= — — — -
p dowork()
l:‘_“) wait()
-
the OS thread scheduler W
automatically suspends [<
'/ the client thread
-l +
|
sync_method2() acquire() the OS thread scheduler
> [atomically releases
the OS thread — — — the monitor lock
scheduler dowork()
automatically)
resumes L ,
the client ‘- notify()
thread and the -
synchronized release
method —&
¢ _ | ===

-t release()

=——

& [
Wl: dowork()

Vo5

| the OS thread scheduler
R atomically reacquires
the monitor lock

Applying Condition Variables in Practice

« CVsare pOWEI‘fUl but .Client Client Monitor ~Monitor : Monitor
Thread1 Thread2 Object Lock Condition
can be hard to grok & | |
thod1 ;
apply correctly, e.qg. e meledl acquire)
- — — — A
« The protocol for using > 000
- — "-) ¥ .t
CVs involves several - e
“movi rs” the OS tread scheduler WV -
mOVIng par S < '/rhe cﬁenrrhr};ad P E +
¢ |.e., d COndItlon sync_method2() acquire() the OS thread sclhedur‘er
. . [atomically releases
varia ble & d IOCk g@i&igﬁad — — — the monitor lock
automatically } dowork()
rﬁsun?es P notify()
gh?egé‘egéd the & |
synchronized release
method —&
| ¢ _ | ==
K S
“ L
L W‘: dowork() + |
- S rf}e oS z}?read scheduler
atomically reacquires
-t release() the monfi?ér foc!?
B == ‘
v |

Applying Condition Variables in Practice

« CVs are powerful, but
can be hard to grok &

apply correctly, e.qg.

« The non-determinism
of concurrency is tricky

R

- . B Wy - .
o -

E - e = - -

= " — Yy -

- Cli - Cli . i - i : Monitor
~Client ~Client ~Monitor ~Monitor : Monitor
Thread1 Thread2 Object Lock Condition
| sync_method1() | acduire
o quire()
_ — — — -
‘.)dowork{}
l:‘_‘) wait()
-
the OS thread scheduler /VW
automatically suspends [<
'/ the client thread +
|
sync_method2() acquire() the OS thread scheduler
> [atomically releases
the OS thread — — — the monitor lock
scheduler dowork()
automatically ?
resumes L ,
the client -< notify()
thread and the -
synchronized
method —release&
y LT

4’-)

release()

B
dowork()

R

the monitor lock

=——

the OS thread scheduler
atomically reacquires

See en.wikipedia.org/wiki/Nondeterministic algorithm

https://en.wikipedia.org/wiki/Nondeterministic_algorithm

Applying Condltlon Varlables in Practice

« CVs are powerful, but

can be hard to grok &
apply correctly, e.qg.

 The non-determinism
of concurrency is tricky

* i.e., a loop may be
needed to ensure a
resource is available

Thread1 Thread2 Object Lock Condition
| sync_method1() | acduire
- quire()
= — — — -
‘.) dowork()
_. o wait()
-
the OS thread scheduler 7
automatically suspends [<
/ the client thread +
|
sync_method2() acquire() the OS thread scheduler
> [atomically releases
the OS thread — — — the monitor lock
scheduler dowork()
automatically ?
resumes L ,
the client -< notify()
thread and the -
synchronized
method —release&
y T T

K

5

-t release()

B

B
dowork()

=——

boh

the OS thread scheduler
atomically reacquires
the monitor lock

See stackoverflow.com/a/38313778

https://stackoverflow.com/a/38313778

Applying Condition Varlables in Practlce

« CVs are therefore often not used
directly by apps, but instead are
“hidden” within other abstractions

10

Applying Condition Variables in Practice

« CVs are therefore often not used
directly by apps, but instead are Additional Frameworks & Languages
“hidden” within other abstractions

« CVs form the basis for higher-
level synchronizers in Java '

Threading & Synchronization Packages

Java Virtual Machine

Operating System Kernel

System Libraries

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/
locks/AbstractQueuedSynchronizer.ConditionObject.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/AbstractQueuedSynchronizer.ConditionObject.html

Applying Condition Varlables |n Practlce

CVs are therefore often not used
directly by apps, but instead are »e-. i)
“hidden” within other abstractions p=a\ i 7

s “ ™ / / ‘ *s;r»—“‘ - l' » .
« CVs form the basis for higher- o / - W il ’

level synchronizers in Java, e.q.

= ' TR v
- Blocking queues & deques in ? > 4 ,,,,,;::;'/:_,..w
Java. il concurrent® packages » N ’”Ilum\\\\\\\.\m\‘\\\- S
< ".\:‘; . ','”’T{hlal i \‘

N

See docs.oracle.com/javase/tutoriaI/coIIections/ implementations/queue.html

https://docs.oracle.com/javase/tutorial/collections/implementations/queue.html

Applying Condition Variables in Practice

« CVs are therefore often not used

directly by apps, but instead are Consumer

“hidden” within other abstractions

« CVs form the basis for higher-

s \
level synchronizers in Java, e.q. take() \

 Blocking queues & deques in
java.util.concurrent* packages

* e.g., ArrayBlockingQueue

uses ’
2

Producer

/
% put()

=

ArrayBlocking
Queue

put()
take()

ConditionVariable

Q uses

await()
signal()
signalAll()

USes Lock

lock()
unlock()

See upcoming discussion in part 5 of “Java ConditionObject’

Applying Condition Variables in Practice

« CVs are therefore often not used

—
directly by apps, but instead are § - ‘I Ta
“hidden” within other abstractions dcquire lock 12 ‘ _,Z
. CVs form the basis for higher- | g "
level synchronizers in Java, e.q. A Z Wait on conditior
Running
Critical Section Thread

« Java built-in monitor objects

See upcoming lesson on “Java Built-in Monitor Objects”

Applying Condition Variables in Practice

« CVs are therefore often not used

directly by apps, but instead are

-
T4

23

29

1

“hidden” within other abstractions Acquire lock T3
e CVs form the basis for higher- |
level synchronizers in Java, e.g. A Z Wait on condition
Running
Critical Section Thread

« The Monitor Object pattern

A client

Monitor object

Synchronization
l mechanism l

invoke

A

A client

-@//“? method_1 method_1
mFT‘thOd_2 synchronize methocf_2 block until object
b :

A client
thread

¥

Client-thread-specific
monitor object instances

ecomes avdailable

A client
thread

See www.dre.vanderbilt.edu/~schmidt/PDF/monitor.pdf

http://www.dre.vanderbilt.edu/~schmidt/PDF/monitor.pdf

Human Known Use
of Condition Variables

16

Human Known Uses of Condition Variables

« A human known use is a pizza delivery protocol
« Must acquire both the pizza & the keys to deliver the pizza

17

End of Java ConditionObject
(Part 2)

18

