
Java Semaphore (Part 4)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 

Integrated Systems 

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Module
• Appreciate the concept of semaphores 

• Recognize the two types of semaphores

• Know a human known use of 
semaphores 

• Understand the structure & 
functionality of Java Semaphore
& its methods 

• Recognize how Java semaphores 
enable multiple threads to 

• Mediate access to a limited number 
of shared resources

• Coordinate the order in which
operations occur 

• Appreciate Java Semaphore usage
considerations



3

Java Semaphore 
Usage Considerations



4

Java Semaphore Usage Considerations
• Semaphore is more flexible than the more simple Java synchronizers



5

• Semaphore is more flexible than the more simple Java synchronizers, e.g.

• Can atomically acquire & release 
multiple permits with 1 operation

Java Semaphore Usage Considerations



6

• Semaphore is more flexible than the more simple Java synchronizers, e.g.

• Can atomically acquire & release 
multiple permits with 1 operation

• Its acquire() & release() methods 
need not be fully bracketed

1 Semaphores 0

run()

ping : 

PingPongThread

pong :

PingPongThread

print("ping")

run()

print("pong")

Java Semaphore Usage Considerations



7

• Semaphore is more flexible than the more simple Java synchronizers, e.g.

• Can atomically acquire & release 
multiple permits with 1 operation

• Its acquire() & release() methods 
need not be fully bracketed

Java Semaphore Usage Considerations

Naturally, this flexibility comes at some additional cost in performance

1 Semaphores 0

run()

ping : 

PingPongThread

pong :

PingPongThread

print("ping")

run()

print("pong")



8

Semaphore2

• When a semaphore is used for a 
resource pool, it tracks the # of 
free resources

Java Semaphore Usage Considerations



9

• When a semaphore is used for a 
resource pool, it tracks the # of 
free resources

• However, it does not track 
which resources are free

Java Semaphore Usage Considerations



10

• When a semaphore is used for a 
resource pool, it tracks the # of 
free resources

• However, it does not track 
which resources are free

• Other mechanisms may be 
needed to select a particular 
free resource

• e.g., a List, HashMap, etc.

Java Semaphore Usage Considerations

See docs.oracle.com/javase/8/docs/technotes/guides/collections

https://docs.oracle.com/javase/8/docs/technotes/guides/collections


11

• When a semaphore is used for a 
resource pool, it tracks the # of 
free resources

• However, it does not track 
which resources are free

• Other mechanisms may be 
needed to select a particular 
free resource

• e.g., a List, HashMap, etc.

Java Semaphore Usage Considerations

These mechanisms require synchronizers to ensure thread-safety



12

• Semaphores can be tedious & 
error-prone to program due to
common traps & pitfalls

Java Semaphore Usage Considerations



13

• Semaphores can be tedious & 
error-prone to program due to
common traps & pitfalls, e.g.

• Holding a semaphore for a 
long time without needing it

Java Semaphore Usage Considerations

Semaphore semaphore = 

new Semaphore(1);

void someMethod() {

semaphore.acquire();

try { 

for (;;) {

// Do something not 

// involving semaphore

} 

} finally { 

semaphore.release(); 

}

}

Other thread(s) won’t be able to acquire 
the semaphore in a timely manner



14

• Semaphores can be tedious & 
error-prone to program due to
common traps & pitfalls, e.g.

• Holding a semaphore for a 
long time without needing it

• Releasing the semaphore more
times than needed

Java Semaphore Usage Considerations

Semaphore semaphore = 

new Semaphore(1);

void someMethod() {

semaphore.acquire();

...

semaphore.release(); 

semaphore.release(); 

semaphore.release(); 

}

These extra calls to release() will 
falsely allow too many threads to 

acquire the semaphore



15

• Semaphores can be tedious & 
error-prone to program due to
common traps & pitfalls, e.g.

• Holding a semaphore for a 
long time without needing it

• Releasing the semaphore more
times than needed

• Acquiring a semaphore & 
forgetting to release it

Semaphore semaphore = 

new Semaphore(1);

void someMethod() {

semaphore.acquire();

... // Critical section

return;

}

Java Semaphore Usage Considerations

The semaphore may 
be locked indefinitely!



16

• Semaphores can be tedious & 
error-prone to program due to
common traps & pitfalls, e.g.

• Holding a semaphore for a 
long time without needing it

• Releasing the semaphore more
times than needed

• Acquiring a semaphore & 
forgetting to release it

Semaphore semaphore = 

new Semaphore(1);

void someMethod() {

semaphore.acquire();

try {

... // Critical section

return;

} finally {

semaphore.release();

}

}

Java Semaphore Usage Considerations

See docs.oracle.com/javase/tutorial/essential/exceptions/finally.html

It’s a good idea to use the try/finally 
idiom to ensure a Semaphore is always 

released, even if exceptions occur

https://docs.oracle.com/javase/tutorial/essential/exceptions/finally.html


17

• Semaphores are rather limited
synchronizers that don’t scale to 
complex coordination use cases

Java Semaphore Usage Considerations

ConditionObjects may be better for more complex coordination use-cases



18

End of Java Semaphores 
(Part 4)


