Java Semaphore (Part 2)

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderbilt University
Nashuille, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

<<Java Class>>
(& Semaphore

@ Semaphore(int)
@ Semaphore(int,boolean)
. . @ acquire():void
« Understand the structure & functionality & acquireUninterruptibly():void
of Java Semaphore & its methods @ tryAcquire():boolean
@ tryAcquire(long, TimeUnit):boolean
@ release():void
@ acquire(int):void
@ acquireUninterruptibly(int):void
@ tryAcquire(int):boolean
@ tryAcquire(int,long, TimeUnit):boolean
@ release(int):void
@ availablePermits():int
@ drainPermits():int
@ isFair():boolean
& hasQueuedThreads():boolean
& getQueuelLength():int
@ toString()

Overview of
Java Semaphores

Overview of Java Semaphores

« Implements a variant of public class Semaphore
counting semaphores implements ... {

Class Semaphore

java.lang.Object
java.util.concurrent.Semaphore

All Implemented Interfaces:

Serializable

public class Semaphore
extends Object
implements Serializable

A counting semaphore. Conceptually, a semaphore maintains a set of permits. Each acquire () blocks if necessary until a
permit is available, and then takes it. Each release () adds a permit, potentially releasing a blocking acquirer. However, no
actual permit objects are used; the Semaphore just keeps a count of the number available and acts accordingly.

Semaphores are often used to restrict the number of threads than can access some (physical or logical) resource. For
example, here is a class that uses a semaphore to control access to a pool of items:

See docs.oracle.com/javase/8/docs/api/
java/util/concurrent/Semaphore.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Semaphore.html

Overview of Java Semaphores

« Implements a variant of public class Semaphore
counting semaphores implements ... {

Class Semaphore

java.lang.Object Semaphore doesn’t implement any
Java.util.concurrent.Semaphore synchronization-related interfaces

All Implemented Interfaces:

Serializable

public class Semaphore
extends Object
implements Serializable

A counting semaphore. Conceptually, a semaphore maintains a set of permits. Each acquire () blocks if necessary until a
permit is available, and then takes it. Each release () adds a permit, potentially releasing a blocking acquirer. However, no
actual permit objects are used; the Semaphore just keeps a count of the number available and acts accordingly.

Semaphores are often used to restrict the number of threads than can access some (physical or logical) resource. For
example, here is a class that uses a semaphore to control access to a pool of items:

Overview of Java Semaphores

« Constructors create semaphore public class Semaphore
with a given # of permits implements ... {

public Semaphore
(int permits) {

}

public Semaphore
(int permits,
boolean fair) {

Overview of Java Semaphores

« Constructors create semaphore public class Semaphore
with a given # of permits implements ... {

« This # is nota maximum,
it's just an initial value

public Semaphore
(int permits) {

}

public Semaphore
(int permits,
boolean fair) {

See stackoverflow.com/questions/7554839/how-and-why-can-a
-semaphore-give-out-more-permits-than-it-was-initialized-with

http://stackoverflow.com/questions/7554839/how-and-why-can-a-semaphore-give-out-more-permits-than-it-was-initialized-with

Overview of Java Semaphores

« Constructors create semaphore public class Semaphore
with a given # of permits implements ... {

s : Semaphore s = new Semaphore(-1) ;
« The initial permit value can

be negative!!

In this case, all threads will block trying to acquire the semaphore
until some thread(s) increment the permit value until it's positive

Overview of Java Semaphores

 Applies the Bridge pattern

Semaphore

|<>imp

public class Semaphore
implements ... {

Decouples its interface from Jits
Implementation so fair & non-fair
semantics can be supported uniformly

operation() ¢

»1Sync
operationimp()
, RN
""" '| imp.operationlmp(); J\
FairSync NonFairSync
operationlmp() operationimp()

See en.wikipedia.org/wiki/Bridge pattern

http://en.wikipedia.org/wiki/Bridge_pattern

Overview of Java Semaphores

« Applies the Bridge pattern public class Semaphore

« Locking handled by Sync implements ... {

Implementor hierarchy /** Performs sync mechanics */

private final Sync sync;

10

Overview of Java Semaphores

« Applies the Bridge pattern public class Semaphore
implements ... {

. . /** Performs sync mechanics */
« Reuses functionality from private final Sync sync;

AbstractQueuedSynchronizer

. Many Java synchronizers that /**
rely on FIFO wait queues use * Synchronization implementation

: £ b
this framework iy or semaphore

abstract static class Sync extends
AbstractQueuedSynchronizer ({

See gee.cs.oswedgo.edu/dl/papers/aas.pdf

http://gee.cs.oswego.edu/dl/papers/aqs.pdf

Overview of Java Semaphores

« Applies the Bridge pattern public class Semaphore
implements ... {

public Semaphore
(int permits,
« Optionally implement fair or boolean fair) {

non-fair lock acquisition model sync = fair _
? new FairSync (permits)

: new NonfairSync (permits);

The Semaphore fair & non-fair models follow the
same pattern used by the Java ReentrantLock

Overview of Java Semaphores

« Applies the Bridge pattern public class Semaphore
implements ... {

public Semaphore
(int permits,
« Optionally implement fair or boolean fair) {

non-fair lock acquisition model sync = fair _
? new| FairSync (permits)

: new| NonfairSync (permits) ;

This param determines whether
FairSync or NonfairSync is used

13

Overview of Java Semaphores

 Applies the Bridge pattern

public class Semaphore
implements ... {

public Semaphore
(int permits,

« Optionally implement fair or boolean fair) {

non-fair lock acquisition model

sync = fair
? new FairSync (permits)

Ensures strict "FIFO”
fairness, at the expense
of performance

_,,—————””T’HEG’NonfairSync(permits);

—

2

A 22230
.‘ B v)’A ‘ \ \ | ',.’&- "

Jam . N

14

Overview of Java Semaphores

« Applies the Bridge pattern public class Semaphore
implements ... {

public Semaphore
(int permits,
« Optionally implement fair or boolean fair) {

non-fair lock acquisition model sync = fair _
? new FairSync (permits)

: new NonfairSync (permits) ;

Enables faster performance
at the expense of fairness

15

Overview of Java Semaphores

« Applies the Bridge pattern public class Semaphore
implements ... {

public Semaphore
(int permits,
« Optionally implement fair or boolean fair) {

non-fair lock acquisition model sync = fair _
? new FairSync (permits)

: new NonfairSync (permits);

}

public Semaphore
(int permits) ({

The default behavior favors —___ sync = new
performance over fairness

NonfairSync (permits) ;
}

16

Overview of Java Semaphores

 Acquiring & releasing permits from/to a ong 9§
semaphore need not be “fully bracketed PingPongThread

* i.e., a thread that acquires a semaphore ,
need not be the one that releases it |

run()

print("pong")

:

ping : »g
PingPongThread

run()

Q print("ping")
¥

See example in part 3 of this lesson

Overview of Key Java
Semaphore Methods

18

Overview of Key Java Semaphore Methods

« Its key methods acquire & public class Semaphore
release the semaphore implements ... {
public void acquire() { ... }

public void
acquireUninterruptibly ()

{ ...}

public boolean tryAcquire
(long timeout,
TimeUnit unit)

{ ... 1}

public void release() { ... }

See docs.oracle.com/javase/8/docs/api/
java/util/concurrent/Semaphore.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Semaphore.html

Overview of Key Java Semaphore Methods

« Its key methods acquire & public class Semaphore
release the semaphore implements ... {
public void acquire() { ... }

public void
acquireUninterruptibly ()

{ ...}

public boolean tryAcquire
(long timeout,
TimeUnit unit)

{ ... 1}

public void release() { ... }

These methods forward to their implementor
methods, most of which are inherited from
the AbstractQueuedSynchronizer framework

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/locks/AbstractQueuedSynchronizer.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/AbstractQueuedSynchronizer.html

Overview of Key Java Semaphore Methods

« Its key methods acquire & public class Semaphore
release the semaphore implements ... {

« acquire() atomically obtains

a permit from the semaphore ~ PuPlic void acquire() {

sync.
acquireSharedInterruptibly (1) ;
}

21

Overview of Key Java Semaphore Methods

« Its key methods acquire & public class Semaphore
release the semaphore implements ... {

« acquire() atomically obtains

. 1- - .
a permit from the semaphore public void acquire() {

sync.
« Can be interrupted acquireSharedInterruptibly (1) ;
}

Please

See docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.htmi

https://docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html

Overview of Key Java Semaphore Methods

« Its key methods acquire & public class Semaphore
release the semaphore implements ... {

public void
acquireUninterruptibly () ({
« acquireUninterruptibly() also sync.acquireShared(1)
obtains a permit from the }

semaphore
« Cannot be interrupted

Please

23

Overview of Key Java Semaphore Methods

« Its key methods acquire & public class Semaphore
release the semaphore implements ... {

public boolean tryAcquire ()
- A
sync.
nonfairTryAcquireShared (1)
>= 0;
« tryAcquire() obtains a permit if }
it's available at invocation time

24

Overview of Key Java Semaphore Methods

« Its key methods acquire &
release the semaphore

« tryAcquire() obtains a permit if
it's available at invocation time

A

public class Semaphore

implements ... {

public boolean tryAcquire ()

}

- A

sync.

nonfairTryAcquireShared (1)
>= 0;

\/,

..‘z/.‘

Q'f'
: (f-
S)

—_—

0

.\‘

°/

ﬂ

Untimed tryAcquire() methods will “barge”,
honor the fairness setting & take any permits available

. i.e., they don't

Overview of Key Java Semaphore Methods

« Its key methods acquire & public class Semaphore
release the semaphore implements ... {

public void release() ({
sync.releaseShared(1l) ;

}

* release() atomically increments
the permit count by 1

Recall it's valid for the permit count to exceed the initial permit count!!

Overview of Other Java
Semaphore Methods

27

Overview of Other Java Semaphore Methods

* There are many other
Semaphore methods

void

void

boolean

void

boolean

boolean

acquire(int permits) — Acquires # of
permits from semaphore, blocking until
all are available, or thread interrupted

acquireUninterruptibly(int permits) —
Acquires # of permits from semaphore,
blocking until all available

tryAcquire(int permits) — Acquires given
of permits from semaphore, only if all
are available at the time of invocation

release(int permits) — Releases # of
permits, returning them to semaphore

tryAcquire(long timeout, TimeUnit unit)
— Acquires a permit from semaphore, if
one is available within given waiting

time & thread has not been interrupted

tryAcquire(int permits, long timeout,
TimeUnit unit) — Acquires given # of
permits from semaphore, if all available
within given waiting time & current
thread has not been interrupted

28

http://developer.android.com/reference/java/util/concurrent/Semaphore.htmlacquire(int)
http://developer.android.com/reference/java/util/concurrent/Semaphore.htmlacquireUninterruptibly(int)
http://developer.android.com/reference/java/util/concurrent/Semaphore.htmltryAcquire(int)
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Semaphore.htmlrelease(int)
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Semaphore.htmltryAcquire(long, java.util.concurrent.TimeUnit)
http://developer.android.com/reference/java/util/concurrent/Semaphore.htmltryAcquire(int, long, java.util.concurrent.TimeUnit)

Overview of Other Java Semaphore Methods

* There are many other
Semaphore methods

« Some methods can acquire
or release multiple permits
at a time

void

void

boolean

void

acquire(int permits) — Acquires # of
permits from semaphore, blocking until
all are available, or thread interrupted

acquireUninterruptibly(int permits) —
Acquires # of permits from semaphore,
blocking until all available

tryAcquire(int permits) — Acquires given
of permits from semaphore, only if all
are available at the time of invocation

release(int permits) — Releases # of
permits, returning them to semaphore

29

http://developer.android.com/reference/java/util/concurrent/Semaphore.htmlacquire(int)
http://developer.android.com/reference/java/util/concurrent/Semaphore.htmlacquireUninterruptibly(int)
http://developer.android.com/reference/java/util/concurrent/Semaphore.htmltryAcquire(int)
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Semaphore.htmlrelease(int)

Overview of Other Java Semaphore Methods

* There are many other
Semaphore methods

 Likewise, some of these
methods use timeouts

boolean tryAcquire(long timeout, TimeUnit unit)
— Acquires a permit from semaphore, if
one is available within given waiting
time & thread has not been interrupted

boolean tryAcquire(int permits, long timeout,
TimeUnit unit) — Acquires given # of
permits from semaphore, if all available
within given waiting time & current
thread has not been interrupted

Ironically, the timed tryAcquire() methods do
honor the fairness setting, so they don‘t “barge”

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Semaphore.htmltryAcquire(long, java.util.concurrent.TimeUnit)
http://developer.android.com/reference/java/util/concurrent/Semaphore.htmltryAcquire(int, long, java.util.concurrent.TimeUnit)

End of Java Semaphores
(Part 2)

31

