
Java Semaphore (Part 2)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Appreciate the concept of semaphores

• Recognize the two types of semaphores

• Know a human known use of
semaphores

• Understand the structure & functionality
of Java Semaphore & its methods

3

Overview of
Java Semaphores

4

• Implements a variant of
counting semaphores

Overview of Java Semaphores

See docs.oracle.com/javase/8/docs/api/
java/util/concurrent/Semaphore.html

public class Semaphore

implements ... {

...

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Semaphore.html

5

• Implements a variant of
counting semaphores

public class Semaphore

implements ... {

...

Overview of Java Semaphores

Semaphore doesn’t implement any
synchronization-related interfaces

6

• Constructors create semaphore
with a given # of permits

public class Semaphore

implements ... {

...

public Semaphore

(int permits) {

...

}

public Semaphore

(int permits,

boolean fair) {

...

}

...

Overview of Java Semaphores

7

• Constructors create semaphore
with a given # of permits

• This # is not a maximum,
it’s just an initial value

public class Semaphore

implements ... {

...

public Semaphore

(int permits) {

...

}

public Semaphore

(int permits,

boolean fair) {

...

}

...

Overview of Java Semaphores

See stackoverflow.com/questions/7554839/how-and-why-can-a
-semaphore-give-out-more-permits-than-it-was-initialized-with

http://stackoverflow.com/questions/7554839/how-and-why-can-a-semaphore-give-out-more-permits-than-it-was-initialized-with

8

• Constructors create semaphore
with a given # of permits

• This # is not a maximum,
it’s just an initial value

• The initial permit value can
be negative!!

public class Semaphore

implements ... {

...

Semaphore s = new Semaphore(-1);

...

Overview of Java Semaphores

In this case, all threads will block trying to acquire the semaphore
until some thread(s) increment the permit value until it’s positive

9

• Applies the Bridge pattern public class Semaphore

implements ... {

...

See en.wikipedia.org/wiki/Bridge_pattern

Overview of Java Semaphores

Semaphore Sync

FairSync NonFairSync

Decouples its interface from its
implementation so fair & non-fair

semantics can be supported uniformly

http://en.wikipedia.org/wiki/Bridge_pattern

10

• Applies the Bridge pattern

• Locking handled by Sync
Implementor hierarchy

public class Semaphore

implements ... {

...

/** Performs sync mechanics */

private final Sync sync;

Overview of Java Semaphores

11

• Applies the Bridge pattern

• Locking handled by Sync
Implementor hierarchy

• Reuses functionality from
AbstractQueuedSynchronizer

• Many Java synchronizers that
rely on FIFO wait queues use
this framework

public class Semaphore

implements ... {

...

/** Performs sync mechanics */

private final Sync sync;

/**

* Synchronization implementation

* for semaphore

*/

abstract static class Sync extends

AbstractQueuedSynchronizer {

...

}

Overview of Java Semaphores

See gee.cs.oswego.edu/dl/papers/aqs.pdf

http://gee.cs.oswego.edu/dl/papers/aqs.pdf

12

• Applies the Bridge pattern

• Locking handled by Sync
Implementor hierarchy

• Reuses functionality from
AbstractQueuedSynchronizer

• Optionally implement fair or
non-fair lock acquisition model

public class Semaphore

implements ... {

...

public Semaphore

(int permits,

boolean fair) {

sync = fair

? new FairSync(permits)

: new NonfairSync(permits);

}

...

Overview of Java Semaphores

The Semaphore fair & non-fair models follow the
same pattern used by the Java ReentrantLock

13

• Applies the Bridge pattern

• Locking handled by Sync
Implementor hierarchy

• Reuses functionality from
AbstractQueuedSynchronizer

• Optionally implement fair or
non-fair lock acquisition model

public class Semaphore

implements ... {

...

public Semaphore

(int permits,

boolean fair) {

sync = fair

? new FairSync(permits)

: new NonfairSync(permits);

}

...

Overview of Java Semaphores

This param determines whether
FairSync or NonfairSync is used

14

• Applies the Bridge pattern

• Locking handled by Sync
Implementor hierarchy

• Reuses functionality from
AbstractQueuedSynchronizer

• Optionally implement fair or
non-fair lock acquisition model

public class Semaphore

implements ... {

...

public Semaphore

(int permits,

boolean fair) {

sync = fair

? new FairSync(permits)

: new NonfairSync(permits);

}

...

Overview of Java Semaphores

Ensures strict “FIFO”
fairness, at the expense

of performance

15

• Applies the Bridge pattern

• Locking handled by Sync
Implementor hierarchy

• Reuses functionality from
AbstractQueuedSynchronizer

• Optionally implement fair or
non-fair lock acquisition model

public class Semaphore

implements ... {

...

public Semaphore

(int permits,

boolean fair) {

sync = fair

? new FairSync(permits)

: new NonfairSync(permits);

}

...

Overview of Java Semaphores

Enables faster performance
at the expense of fairness

16

• Applies the Bridge pattern

• Locking handled by Sync
Implementor hierarchy

• Reuses functionality from
AbstractQueuedSynchronizer

• Optionally implement fair or
non-fair lock acquisition model

public class Semaphore

implements ... {

...

public Semaphore

(int permits,

boolean fair) {

sync = fair

? new FairSync(permits)

: new NonfairSync(permits);

}

public Semaphore

(int permits) {

sync = new

NonfairSync(permits);

}

...

Overview of Java Semaphores

The default behavior favors
performance over fairness

17

• Acquiring & releasing permits from/to a
semaphore need not be “fully bracketed”

• i.e., a thread that acquires a semaphore
need not be the one that releases it

run()

ping :

PingPongThread

pong :

PingPongThread

print("ping")

run()

print("pong")

Overview of Java Semaphores

See example in part 3 of this lesson

18

Overview of Key Java
Semaphore Methods

19

• Its key methods acquire &
release the semaphore

public class Semaphore

implements ... {

...

public void acquire() { ... }

public void

acquireUninterruptibly()

{ ... }

public boolean tryAcquire

(long timeout,

TimeUnit unit)

{ ... }

public void release() { ... }

...

Overview of Key Java Semaphore Methods

See docs.oracle.com/javase/8/docs/api/
java/util/concurrent/Semaphore.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Semaphore.html

20

• Its key methods acquire &
release the semaphore

public class Semaphore

implements ... {

...

public void acquire() { ... }

public void

acquireUninterruptibly()

{ ... }

public boolean tryAcquire

(long timeout,

TimeUnit unit)

{ ... }

public void release() { ... }

...

Overview of Key Java Semaphore Methods

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/locks/AbstractQueuedSynchronizer.html

These methods forward to their implementor
methods, most of which are inherited from
the AbstractQueuedSynchronizer framework

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/AbstractQueuedSynchronizer.html

21

• Its key methods acquire &
release the semaphore

• acquire() atomically obtains
a permit from the semaphore

public class Semaphore

implements ... {

...

public void acquire() {

sync.

acquireSharedInterruptibly(1);

}

...

Overview of Key Java Semaphore Methods

22

• Its key methods acquire &
release the semaphore

• acquire() atomically obtains
a permit from the semaphore

• Can be interrupted

public class Semaphore

implements ... {

...

public void acquire() {

sync.

acquireSharedInterruptibly(1);

}

...

Overview of Key Java Semaphore Methods

Do

Disturb

See docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html

23

• Its key methods acquire &
release the semaphore

• acquire() atomically obtains
a permit from the semaphore

• acquireUninterruptibly() also
obtains a permit from the
semaphore

• Cannot be interrupted

public class Semaphore

implements ... {

...

public void

acquireUninterruptibly() {

sync.acquireShared(1)

}

...

Overview of Key Java Semaphore Methods

Do Not

Disturb

24

• Its key methods acquire &
release the semaphore

• acquire() atomically obtains
a permit from the semaphore

• acquireUninterruptibly() also
obtains a permit from the
semaphore

• tryAcquire() obtains a permit if
it’s available at invocation time

public class Semaphore

implements ... {

...

public boolean tryAcquire()

... {

sync.

nonfairTryAcquireShared(1)

>= 0;

}

...

Overview of Key Java Semaphore Methods

25

• Its key methods acquire &
release the semaphore

• acquire() atomically obtains
a permit from the semaphore

• acquireUninterruptibly() also
obtains a permit from the
semaphore

• tryAcquire() obtains a permit if
it’s available at invocation time

public class Semaphore

implements ... {

...

public boolean tryAcquire()

... {

sync.

nonfairTryAcquireShared(1)

>= 0;

}

...

Overview of Key Java Semaphore Methods

Untimed tryAcquire() methods will “barge”, i.e., they don’t
honor the fairness setting & take any permits available

26

• Its key methods acquire &
release the semaphore

• acquire() atomically obtains
a permit from the semaphore

• acquireUninterruptibly() also
obtains a permit from the
semaphore

• tryAcquire() obtains a permit if
it’s available at invocation time

• release() atomically increments
the permit count by 1

public class Semaphore

implements ... {

...

public void release() {

sync.releaseShared(1);

}

...

Recall it’s valid for the permit count to exceed the initial permit count!!

Overview of Key Java Semaphore Methods

27

Overview of Other Java
Semaphore Methods

28

void acquire(int permits) – Acquires # of

permits from semaphore, blocking until

all are available, or thread interrupted

void acquireUninterruptibly(int permits) –

Acquires # of permits from semaphore,

blocking until all available

boolean tryAcquire(int permits) – Acquires given

of permits from semaphore, only if all

are available at the time of invocation

void release(int permits) – Releases # of

permits, returning them to semaphore

boolean tryAcquire(long timeout, TimeUnit unit)

– Acquires a permit from semaphore, if

one is available within given waiting

time & thread has not been interrupted

boolean tryAcquire(int permits, long timeout,

TimeUnit unit) – Acquires given # of

permits from semaphore, if all available

within given waiting time & current

thread has not been interrupted

Overview of Other Java Semaphore Methods
• There are many other

Semaphore methods

http://developer.android.com/reference/java/util/concurrent/Semaphore.htmlacquire(int)
http://developer.android.com/reference/java/util/concurrent/Semaphore.htmlacquireUninterruptibly(int)
http://developer.android.com/reference/java/util/concurrent/Semaphore.htmltryAcquire(int)
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Semaphore.htmlrelease(int)
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Semaphore.htmltryAcquire(long, java.util.concurrent.TimeUnit)
http://developer.android.com/reference/java/util/concurrent/Semaphore.htmltryAcquire(int, long, java.util.concurrent.TimeUnit)

29

void acquire(int permits) – Acquires # of

permits from semaphore, blocking until

all are available, or thread interrupted

void acquireUninterruptibly(int permits) –

Acquires # of permits from semaphore,

blocking until all available

boolean tryAcquire(int permits) – Acquires given

of permits from semaphore, only if all

are available at the time of invocation

void release(int permits) – Releases # of

permits, returning them to semaphore

boolean tryAcquire(long timeout, TimeUnit unit)

– Acquires a permit from semaphore, if

one is available within given waiting

time & thread has not been interrupted

boolean tryAcquire(int permits, long timeout,

TimeUnit unit) – Acquires given # of

permits from semaphore, if all available

within given waiting time & current

thread has not been interrupted

Overview of Other Java Semaphore Methods
• There are many other

Semaphore methods

• Some methods can acquire
or release multiple permits
at a time

http://developer.android.com/reference/java/util/concurrent/Semaphore.htmlacquire(int)
http://developer.android.com/reference/java/util/concurrent/Semaphore.htmlacquireUninterruptibly(int)
http://developer.android.com/reference/java/util/concurrent/Semaphore.htmltryAcquire(int)
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Semaphore.htmlrelease(int)

30

void acquire(int permits) – Acquires # of

permits from semaphore, blocking until

all are available, or thread interrupted

void acquireUninterruptibly(int permits) –

Acquires # of permits from semaphore,

blocking until all available

boolean tryAcquire(int permits) – Acquires given

of permits from semaphore, only if all

are available at the time of invocation

void release(int permits) – Releases # of

permits, returning them to semaphore

boolean tryAcquire(long timeout, TimeUnit unit)

– Acquires a permit from semaphore, if

one is available within given waiting

time & thread has not been interrupted

boolean tryAcquire(int permits, long timeout,

TimeUnit unit) – Acquires given # of

permits from semaphore, if all available

within given waiting time & current

thread has not been interrupted

Overview of Other Java Semaphore Methods
• There are many other

Semaphore methods

• Some methods can acquire
or release multiple permits
at a time

• Likewise, some of these
methods use timeouts

Ironically, the timed tryAcquire() methods do
honor the fairness setting, so they don’t “barge”

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Semaphore.htmltryAcquire(long, java.util.concurrent.TimeUnit)
http://developer.android.com/reference/java/util/concurrent/Semaphore.htmltryAcquire(int, long, java.util.concurrent.TimeUnit)

31

End of Java Semaphores
(Part 2)

