
Safe Publication in Java:

Introduction

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 

Integrated Systems 

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Understand what “safe publication” 

means in the context of Java objects



3

Overview of Safe 
Publication in Java



4

• A Java object that’s shared across 
threads must meet several criteria

Overview of Safe Publication in Java

Semaphore3

See flylib.com/books/en/2.558.1/safe_publication.html

https://flylib.com/books/en/2.558.1/safe_publication.html


5

• A Java object that’s shared across 
threads must meet several criteria

• They must be constructed properly

Overview of Safe Publication in Java

See shipilev.net/blog/2014/safe-public-construction

https://shipilev.net/blog/2014/safe-public-construction


6

• A Java object that’s shared across 
threads must meet several criteria

• They must be constructed properly

• If the this reference “escapes” 

during construction the object 
is not properly constructed

Overview of Safe Publication in Java

See vlkan.com/blog/post/2014/02/14/java-safe-publication

public class ThisEscape { 

public ThisEscape

(EventSource source) { 

source

.registerListener

(new EventListener() { 

public void 

onEvent(Event event){ 

doSomething(event); 

} 

}); 

} 

} 

https://vlkan.com/blog/post/2014/02/14/java-safe-publication


7

• A Java object that’s shared across 
threads must meet several criteria

• They must be constructed properly

• If the this reference “escapes” 

during construction the object 
is not properly constructed

Overview of Safe Publication in Java

See vlkan.com/blog/post/2014/02/14/java-safe-publication

public class ThisEscape { 

public ThisEscape

(EventSource source) { 

source

.registerListener

(new EventListener() { 

public void 

onEvent(Event event){ 

doSomething(event); 

} 

}); 

} 

} 

Implicitly publish the enclosing 
ThisEscape object because inner 

class instances contain a hidden 
reference to the enclosing object

https://vlkan.com/blog/post/2014/02/14/java-safe-publication


8

• A Java object that’s shared across 
threads must meet several criteria

• They must be constructed properly

• They must be “published safely”

Overview of Safe Publication in Java

See shipilev.net/blog/2014/safe-public-construction

https://shipilev.net/blog/2014/safe-public-construction


9

• A Java object that’s shared across 
threads must meet several criteria

• They must be constructed properly

• They must be “published safely”

• Safe publication ensures all values 
written within a thread before the 
publication are visible to all reader 
threads that observe the published 
object

Overview of Safe Publication in Java

This “object-level” property can be viewed as a generalization of 
“operation-level” atomic operations discussed in earlier lessons



10

• A Java object that’s shared across 
threads must meet several criteria

• They must be constructed properly

• They must be “published safely”

• Safe publication ensures all values 
written within a thread before the 
publication are visible to all reader 
threads that observe the published 
object

• Storing a object reference into 
a public field is insufficient to 
publish that object safely

Overview of Safe Publication in Java
class A {

public ArrayList<String>

mList;

public void initialize() { 

mList = new ArrayList<>(

Array.asList(...);

}

}

// Thread T1

A a = new A();

a.initialize();

// Thread T2

doSomething(a.mList);

This problem only arises in multi-threaded programs on multi-core CPUs



11

• A Java object that’s shared across 
threads must meet several criteria

• They must be constructed properly

• They must be “published safely”

• Safe publication ensures all values 
written within a thread before the 
publication are visible to all reader 
threads that observe the published 
object

• Storing a object reference into 
a public field is insufficient to 
publish that object safely

Overview of Safe Publication in Java
class A {

public ArrayList<String>

mList;

public void initialize() { 

mList = new ArrayList<>(

Array.asList(...);

}

}

// Thread T1

A a = new A();

a.initialize();

// Thread T2

doSomething(a.mList);

Initialize a field in thread T1



12

• A Java object that’s shared across 
threads must meet several criteria

• They must be constructed properly

• They must be “published safely”

• Safe publication ensures all values 
written within a thread before the 
publication are visible to all reader 
threads that observe the published 
object

• Storing a object reference into 
a public field is insufficient to 
publish that object safely

Overview of Safe Publication in Java
class A {

public ArrayList<String>

mList;

public void initialize() { 

mList = new ArrayList<>(

Array.asList(...);

}

}

// Thread T1

A a = new A();

a.initialize();

// Thread T2

doSomething(a.mList);

mList is not guaranteed to be initialized when thread T2 gets a reference to object a



13

End of Safe Publication
in Java: Introduction


