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Learning Objectives in this Part of the Lesson
• Understand what “safe publication” 

means in the context of Java objects
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Overview of Safe 
Publication in Java
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• A Java object that’s shared across 
threads must meet several criteria

Overview of Safe Publication in Java

Semaphore3

See flylib.com/books/en/2.558.1/safe_publication.html

https://flylib.com/books/en/2.558.1/safe_publication.html
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• A Java object that’s shared across 
threads must meet several criteria

• They must be constructed properly

Overview of Safe Publication in Java

See shipilev.net/blog/2014/safe-public-construction

https://shipilev.net/blog/2014/safe-public-construction
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• A Java object that’s shared across 
threads must meet several criteria

• They must be constructed properly

• If the this reference “escapes” 

during construction the object 
is not properly constructed

Overview of Safe Publication in Java

See vlkan.com/blog/post/2014/02/14/java-safe-publication

public class ThisEscape { 

public ThisEscape

(EventSource source) { 

source

.registerListener

(new EventListener() { 

public void 

onEvent(Event event){ 

doSomething(event); 

} 

}); 

} 

} 

https://vlkan.com/blog/post/2014/02/14/java-safe-publication
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• A Java object that’s shared across 
threads must meet several criteria

• They must be constructed properly

• If the this reference “escapes” 

during construction the object 
is not properly constructed

Overview of Safe Publication in Java

See vlkan.com/blog/post/2014/02/14/java-safe-publication

public class ThisEscape { 

public ThisEscape

(EventSource source) { 

source

.registerListener

(new EventListener() { 

public void 

onEvent(Event event){ 

doSomething(event); 

} 

}); 

} 

} 

Implicitly publish the enclosing 
ThisEscape object because inner 

class instances contain a hidden 
reference to the enclosing object

https://vlkan.com/blog/post/2014/02/14/java-safe-publication
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• A Java object that’s shared across 
threads must meet several criteria

• They must be constructed properly

• They must be “published safely”

Overview of Safe Publication in Java

See shipilev.net/blog/2014/safe-public-construction

https://shipilev.net/blog/2014/safe-public-construction
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• A Java object that’s shared across 
threads must meet several criteria

• They must be constructed properly

• They must be “published safely”

• Safe publication ensures all values 
written within a thread before the 
publication are visible to all reader 
threads that observe the published 
object

Overview of Safe Publication in Java

This “object-level” property can be viewed as a generalization of 
“operation-level” atomic operations discussed in earlier lessons
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• A Java object that’s shared across 
threads must meet several criteria

• They must be constructed properly

• They must be “published safely”

• Safe publication ensures all values 
written within a thread before the 
publication are visible to all reader 
threads that observe the published 
object

• Storing a object reference into 
a public field is insufficient to 
publish that object safely

Overview of Safe Publication in Java
class A {

public ArrayList<String>

mList;

public void initialize() { 

mList = new ArrayList<>(

Array.asList(...);

}

}

// Thread T1

A a = new A();

a.initialize();

// Thread T2

doSomething(a.mList);

This problem only arises in multi-threaded programs on multi-core CPUs
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• A Java object that’s shared across 
threads must meet several criteria

• They must be constructed properly

• They must be “published safely”

• Safe publication ensures all values 
written within a thread before the 
publication are visible to all reader 
threads that observe the published 
object

• Storing a object reference into 
a public field is insufficient to 
publish that object safely

Overview of Safe Publication in Java
class A {

public ArrayList<String>

mList;

public void initialize() { 

mList = new ArrayList<>(

Array.asList(...);

}

}

// Thread T1

A a = new A();

a.initialize();

// Thread T2

doSomething(a.mList);

Initialize a field in thread T1
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• A Java object that’s shared across 
threads must meet several criteria

• They must be constructed properly

• They must be “published safely”

• Safe publication ensures all values 
written within a thread before the 
publication are visible to all reader 
threads that observe the published 
object

• Storing a object reference into 
a public field is insufficient to 
publish that object safely

Overview of Safe Publication in Java
class A {

public ArrayList<String>

mList;

public void initialize() { 

mList = new ArrayList<>(

Array.asList(...);

}

}

// Thread T1

A a = new A();

a.initialize();

// Thread T2

doSomething(a.mList);

mList is not guaranteed to be initialized when thread T2 gets a reference to object a
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End of Safe Publication
in Java: Introduction


