Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderbilt University
Nashuille, Tennessee, USA



mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

 Understand what “safe publication”
means in the context of Java objects




Overview of Safe
Publication in Java




Overview of Safe Publication in Java

« A Java object that’s shared across
threads must meet several criteria

See flylib.com/books/en/2.558.1/safe publication.html



https://flylib.com/books/en/2.558.1/safe_publication.html

Overview of Safe Publlcatlon in Java

« A Java object that’s shared across
threads must meet several criteria

« They must be constructed properly

See shipilev.net/blog/2014/safe-public-construction



https://shipilev.net/blog/2014/safe-public-construction

Overview of Safe Publication in Java

A Java object that's shared across public class ThisEscape {

threads must meet several criteria public ThisEscape
. They must be constructed properly (EventSource source) {
source
 If the this reference “escapes .registerListener
during construction the object (new EventListener () {
is not properly constructed public void

onEvent (Event event) {
doSomething (event) ;

}
})

See vlkan.com/blog/post/2014/02/14/java-safe-publication



https://vlkan.com/blog/post/2014/02/14/java-safe-publication

Overview of Safe Publication in Java

A Java object that's shared across public class ThisEscape {

threads must meet several criteria public ThisEscape
. They must be constructed properly s(g‘;izzswrce source) {
 If the this reference “escapes” .registerListener
during construction the object (new EventListener () {
is not properly constructed public void
onEvent (Event event) {
doSomething (event) ;
}
}) s
Implicitly publish the enclosing }

ThisEscape object because inner }

class instances contain a hidden
reference to the enclosing object

See vlkan.com/blog/post/2014/02/14/java-safe-publication



https://vlkan.com/blog/post/2014/02/14/java-safe-publication

Overview of Safe Publication in Java

« A Java object that’s shared across
threads must meet several criteria

« They must be “published safely”

See shipilev.net/blog/2014/safe-public-construction



https://shipilev.net/blog/2014/safe-public-construction

Overview of Safe Publication in Java

« A Java object that’s shared across
threads must meet several criteria

« They must be “published safely”

« Safe publication ensures all values
written within a thread before the
publication are visible to all reader
threads that observe the published
object

III

This “object-level” property can be viewed as a generalization of
“operation-level” atomic operations discussed in earlier lessons




Overview of Safe Publication in Java

« A Java object that’s shared across class A {
threads must meet several criteria public ArrayList<String>
mList;
« They must be “published safely” public void initialize() {

mList = new ArrayList<>(
Array.asList(...);

}
}

// Thread T1

« Storing a object reference into A a = new A();
a public field is insufficient to a.initialize();

publish that object safely // Thread T2

doSomething (a.mList) ;

This problem only arises in multi-threaded programs on multi-core CPUs




Overview of Safe Publication in Java

« A Java object that’s shared across class A {
threads must meet several criteria public ArrayList<String>
mList;
« They must be “published safely” public void initialize() {

mList = new ArrayList<>(
\\?rray.asList(...);
}

} Initialize a field in thread T,

// Thread T1 ////////
« Storing a object reference into A a = new A();

a public field is insufficient to a.initialize();

publish that object safely // Thread T2

doSomething (a.mList) ;

11



Overview of Safe Publication in Java

« A Java object that’s shared across class A {
threads must meet several criteria public ArrayList<String>
mList;
« They must be “published safely” public void initialize() {

mList = new ArrayList<>(
Array.asList(...);

}
}

// Thread T1

« Storing a object reference into A a = new A();
a public field is insufficient to a.initialize();

publish that object safely // Thread T2

doSomething(a.mList) ;

mList is not guaranteed to be initialized when thread T, gets a reference to object a

12




End of Safe Publication
in Java: Introduction

13



