
Java Atomic Classes & Operations

(Part 1)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 

Integrated Systems 

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Be aware of the Java memory model Main Memory

42 13

nv v

Cache 1

42 13

nv v

Cache 2

42 13

nv v

Cache n

42 13

nv v

ThreadnThread1 Thread2



3

Learning Objectives in this Part of the Lesson
• Be aware of the Java memory model

• Understand how Java atomic operations 
provide concurrent programs with lock-
free, thread-safe mechanisms to read 
from & write to single variables 



4

Overview of the Java 
Memory Model



5

• Java’s memory model defines semantics of 
multi-threaded access to shared memory

See gee.cs.oswego.edu/dl/cpj/jmm.html

Main Memory

42 13

nv v

Cache 1

42 13

nv v

Cache 2

42 13

nv v

Cache n

42 13

nv v

ThreadnThread1 Thread2

Overview of the Java Memory Model

http://gee.cs.oswego.edu/dl/cpj/jmm.html


6

• Java’s memory model defines semantics of 
multi-threaded access to shared memory, e.g.

• Which instruction reorderings
are allowed in memory

x = y = 0

x = 1

j = y

Thread1

y = 1

i = x

Thread2start threads

ti
m

e

There are a number of potential sources of reordering, 
e.g., the Java compiler, the JIT, & processor caches, etc.

Overview of the Java Memory Model



7

• Java’s memory model defines semantics of 
multi-threaded access to shared memory, e.g.

• Which instruction reorderings
are allowed in memory

• Should not be overly
restrictive, to enable 
hardware optimizations

x = y = 0

x = 1

j = y

Thread1

y = 1

i = x

Thread2start threads

ti
m

e

See en.wikipedia.org/wiki/Memory_ordering

It can end up that i = 0 & j = 
0 due to local caching effects 

in Thread1 & Thread2

Overview of the Java Memory Model

https://en.wikipedia.org/wiki/Memory_ordering


8

• Java’s memory model defines semantics of 
multi-threaded access to shared memory, e.g.

• Which instruction reorderings
are allowed in memory

• Which program outputs may 
occur in a correct JVM
implementation

x = y = 0

r1 = x

y = r1

Thread1

r2 = y

x = r2

Thread2start threads

ti
m

e

See docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.4.3

Overview of the Java Memory Model

https://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.4.3


9

• Java’s memory model defines semantics of 
multi-threaded access to shared memory, e.g.

• Which instruction reorderings
are allowed in memory

• Which program outputs may 
occur in a correct JVM
implementation

• Should not be too generous 
such that values appear 
randomly!

x = y = 0

r1 = x

y = r1

Thread1

r2 = y

x = r2

Thread2start threads

ti
m

e

Must not result in 
r1 = r2 = 42!

Overview of the Java Memory Model



10

• Reading about Java’s memory model is as much fun as watching paint dry..

Overview of the Java Memory Model

See www.cs.umd.edu/users/pugh/java/memoryModel/jsr-133-faq.html

http://www.cs.umd.edu/users/pugh/java/memoryModel/jsr-133-faq.html


11

• Reading about Java’s memory model is as much fun as watching paint dry..

Fortunately, you needn’t understand all these memory model details 
– you just need to know how to use Java synchronizers properly!!

Overview of the Java Memory Model



12

Overview of Java 
Atomic Classes



13

Overview of Java Atomic Classes
• The java.util.concurrent.atomic

package several types of atomic 
actions on objects

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/atomic/package-summary.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html


14

Overview of Java Atomic Classes
• The java.util.concurrent.atomic

package several types of atomic 
actions on objects

• Atomic variables

• Provide lock-free thread-safe 
operations on single variables

See docs.oracle.com/javase/tutorial/essential/concurrency/atomicvars.html

http://docs.oracle.com/javase/tutorial/essential/concurrency/atomicvars.html


15See docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicLong.html

Overview of Java Atomic Classes
• The java.util.concurrent.atomic

package several types of atomic 
actions on objects

• Atomic variables

• Provide lock-free thread-safe 
operations on single variables

• e.g., AtomicLong supports
atomic “compare-and-swap” 
operations

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicLong.html


16

Overview of Java Atomic Classes
• The java.util.concurrent.atomic

package several types of atomic 
actions on objects

• Atomic variables

• LongAdder

• Allows multiple threads to update 
a common sum efficiently under 
high contention

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/LongAdder.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/LongAdder.html


17

Overview of 
Atomic Operations



18

• Atomics operations in Java are 
implemented in hardware with 
some support at the OS & VM 
layers

Overview of Atomic Operations

Additional Frameworks & Languages

Operating System Kernel

Applications

System Libraries

Java Virtual Machine 

Threading & Synchronization Packages

Ja
va

/J
N

I
C
+

+
/C

C

See software.intel.com/en-us/node/506090

https://software.intel.com/en-us/node/506090


19See en.wikipedia.org/wiki/Compare-and-swap

int compareAndSwap(int *loc, 

int expected, 

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

• Atomics operations in Java are 
implemented in hardware with 
some support at the OS & VM 
layers, e.g.

• CAS – “compare-and-swap”

Overview of Atomic Operations

Compare-and-swap atomically compares the current contents of a memory 
location to a given value & iff they are the same it modifies the contents of 

that memory location to a given new value & returns the old value

http://en.wikipedia.org/wiki/Compare-and-swap


20

int compareAndSwap(int *loc, 

int expected, 

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

• Atomics operations in Java are 
implemented in hardware with 
some support at the OS & VM 
layers, e.g.

• CAS – “compare-and-swap”

Overview of Atomic Operations

Compare-and-swap atomically compares the current contents of a memory 
location to a given value & iff they are the same it modifies the contents of 

that memory location to a given new value & returns the old value



21

int compareAndSwap(int *loc, 

int expected, 

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

• Atomics operations in Java are 
implemented in hardware with 
some support at the OS & VM 
layers, e.g.

• CAS – “compare-and-swap”

Overview of Atomic Operations

Compare-and-swap atomically compares the current contents of a 
memory location to a given value & iff they are the same it modifies the 

contents of that memory location to a given new value & returns the old value



22

int compareAndSwap(int *loc, 

int expected, 

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

• Atomics operations in Java are 
implemented in hardware with 
some support at the OS & VM 
layers, e.g.

• CAS – “compare-and-swap”

Overview of Atomic Operations

Compare-and-swap atomically compares the current contents of a memory 
location to a given value & iff they are the same it modifies the contents 

of that memory location to a given new value & returns the old value



23

int compareAndSwap(int *loc, 

int expected, 

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

• Atomics operations in Java are 
implemented in hardware with 
some support at the OS & VM 
layers, e.g.

• CAS – “compare-and-swap”

Overview of Atomic Operations

Compare-and-swap atomically compares the current contents of a memory 
location to a given value & iff they are the same it modifies the contents of 

that memory location to a given new value & returns the old value



24

void lock(int *mutex) { 

while (compareAndSwap(mutex, 0, 1) == 1) 

continue;

}

• Atomics operations in Java are 
implemented in hardware with 
some support at the OS & VM 
layers, e.g.

• CAS – “compare-and-swap”

int compareAndSwap(int *loc, 

int expected, 

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

Overview of Atomic Operations

See en.wikipedia.org/wiki/Spinlock

The lock() method uses compareAndSwap() to 
implement mutual exclusion (mutex) via a “spin-lock”

http://en.wikipedia.org/wiki/Spinlock


25

void lock(int *mutex) { 

while (compareAndSwap(mutex, 0, 1) == 1) 

continue;

}

• Atomics operations in Java are 
implemented in hardware with 
some support at the OS & VM 
layers, e.g.

• CAS – “compare-and-swap”

Overview of Atomic Operations

The lock() method uses compareAndSwap() to 
implement mutual exclusion (mutex) via a “spin-lock”

int compareAndSwap(int *loc, 

int expected, 

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}



26

void lock(int *mutex) { 

while (compareAndSwap(mutex, 0, 1) == 1) 

continue;

}

• Atomics operations in Java are 
implemented in hardware with 
some support at the OS & VM 
layers, e.g.

• CAS – “compare-and-swap”

int compareAndSwap(int *loc, 

int expected, 

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

Overview of Atomic Operations

compareAndSwap() checks if the location pointed to 
by mutex is 0 & iff that’s true it sets the value to 1



27

void lock(int *mutex) { 

while (compareAndSwap(mutex, 0, 1) == 1) 

continue;

}

• Atomics operations in Java are 
implemented in hardware with 
some support at the OS & VM 
layers, e.g.

• CAS – “compare-and-swap”

int compareAndSwap(int *loc, 

int expected, 

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

Overview of Atomic Operations

compareAndSwap() checks if the location pointed to 
by mutex is 0 & iff that’s true it sets the value to 1



28

void lock(int *mutex) { 

while (compareAndSwap(mutex, 0, 1) == 1) 

continue;

}

• Atomics operations in Java are 
implemented in hardware with 
some support at the OS & VM 
layers, e.g.

• CAS – “compare-and-swap”

int compareAndSwap(int *loc, 

int expected, 

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

Overview of Atomic Operations

compareAndSwap() checks if the location pointed to 
by mutex is 0 & iff that’s true it sets the value to 1



29

void lock(int *mutex) { 

while (compareAndSwap(mutex, 0, 1) == 1) 

continue;

}

• Atomics operations in Java are 
implemented in hardware with 
some support at the OS & VM 
layers, e.g.

• CAS – “compare-and-swap”

int compareAndSwap(int *loc, 

int expected, 

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

Overview of Atomic Operations

If compareAndSwap() returns 1 that means the 
mutex is “acquired” so the loop keeps spinning



30

void lock(int *mutex) { 

while (compareAndSwap(mutex, 0, 1) == 1) 

continue;

}

void unlock(int *mutex) {

START_ATOMIC();

*mutex = 0;

END_ATOMIC();

}

• Atomics operations in Java are 
implemented in hardware with 
some support at the OS & VM 
layers, e.g.

• CAS – “compare-and-swap”

int compareAndSwap(int *loc, 

int expected, 

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

Overview of Atomic Operations

The unlock() method atomically 
resets the mutex value to 0



31

void lock(int *mutex) { 

while (compareAndSwap(mutex, 0, 1) == 1) 

continue;

}

void unlock(int *mutex) {

START_ATOMIC();

*mutex = 0;

END_ATOMIC();

}

• Atomics operations in Java are 
implemented in hardware with 
some support at the OS & VM 
layers, e.g.

• CAS – “compare-and-swap”

int compareAndSwap(int *loc, 

int expected, 

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

Overview of Atomic Operations

The unlock() method atomically
resets the mutex value to 0



32

void lock(int *mutex) { 

while (compareAndSwap(mutex, 0, 1) == 1) 

continue;

}

void unlock(int *mutex) {

START_ATOMIC();

*mutex = 0;

END_ATOMIC();

}

• Atomics operations in Java are 
implemented in hardware with 
some support at the OS & VM 
layers, e.g.

• CAS – “compare-and-swap”

int compareAndSwap(int *loc, 

int expected, 

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

Overview of Atomic Operations

The unlock() method atomically 
resets the mutex value to 0



33

int testAndSet(int *loc) {

int oldValue;

START_ATOMIC();

oldValue = *loc;

*loc = 1; // 1 == locked

END_ATOMIC();

return oldValue;

}

See en.wikipedia.org/wiki/Test-and-set

• Atomic operations can be 
implemented other ways

• e.g., “test-and-set”

Overview of Atomic Operations

Test-and-set atomically modifies 
the contents of a memory location 

& returns its old value

http://en.wikipedia.org/wiki/Test-and-set


34

• Atomic operations can be 
implemented other ways

• e.g., “test-and-set”

Overview of Atomic Operations

Test-and-set atomically modifies 
the contents of a memory location 

& returns its old value

int testAndSet(int *loc) {

int oldValue;

START_ATOMIC();

oldValue = *loc;

*loc = 1; // 1 == locked

END_ATOMIC();

return oldValue;

}



35

• Atomic operations can be 
implemented other ways

• e.g., “test-and-set”

Overview of Atomic Operations

Test-and-set atomically modifies 
the contents of a memory 

location & returns its old value

int testAndSet(int *loc) {

int oldValue;

START_ATOMIC();

oldValue = *loc;

*loc = 1; // 1 == locked

END_ATOMIC();

return oldValue;

}



36

• Atomic operations can be 
implemented other ways

• e.g., “test-and-set”

Overview of Atomic Operations

Test-and-set atomically modifies 
the contents of a memory location 

& returns its old value

int testAndSet(int *loc) {

int oldValue;

START_ATOMIC();

oldValue = *loc;

*loc = 1; // 1 == locked

END_ATOMIC();

return oldValue;

}



37

void lock(int *loc) { 

while (testAndSet(loc) == 1); 

}

void unlock(int *loc) {

START_ATOMIC(); 

*loc = 0;

END_ATOMIC();

}

Test-and-set can also be used 
to implement a spin-lock mutex

Overview of Atomic Operations
int testAndSet(int *loc) {

int oldValue;

START_ATOMIC();

oldValue = *loc;

*loc = 1; // 1 == locked

END_ATOMIC();

return oldValue;

}

• Atomic operations can be 
implemented other ways

• e.g., “test-and-set”



38

Overview of Atomic Operations
• compareAndSwap() provides a 

more general solution than the 
testAndSet()

int compareAndSwap(int *loc, 

int expected, 

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

See pages.cs.wisc.edu/~remzi/OSTEP/threads-locks.pdf

int testAndSet(int *loc) {

int oldValue;

START_ATOMIC();

oldValue = *loc;

*loc = 1; // 1 == locked

END_ATOMIC();

return oldValue;

}

http://pages.cs.wisc.edu/~remzi/OSTEP/threads-locks.pdf


39

Overview of Atomic Operations
• compareAndSwap() provides a 

more general solution than the 
testAndSet()

• e.g., it can set the value to 
something other than 1 or 0

This capability is used by various Atomic* classes in Java

int compareAndSwap(int *loc, 

int expected, 

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

int testAndSet(int *loc) {

int oldValue;

START_ATOMIC();

oldValue = *loc;

*loc = 1; // 1 == locked

END_ATOMIC();

return oldValue;

}



40

Human Known Use 
of Atomic Operations



41

Human Known Use of Atomic Operations 
• One “human” known use of atomic 

operations is a Star Trek transporter

See en.wikipedia.org/wiki/Transporter_(Star_Trek)

http://en.wikipedia.org/wiki/Transporter_(Star_Trek)


42

Human Known Use of Atomic Operations 
• One “human” known use of atomic 

operations is a Star Trek transporter

• Converts a person/object into an energy 
pattern & “beams” them to a destination 
where they’re converted back into matter



43

Human Known Use of Atomic Operations 
• One “human” known use of atomic 

operations is a Star Trek transporter

• Converts a person/object into an energy 
pattern & “beams” them to a destination 
where they’re converted back into matter

• This process must occur atomically or a 
horrible accident will occur! 

See en.wikipedia.org/wiki/Transporter_(Star_Trek)#Transporter_accidents

http://en.wikipedia.org/wiki/Transporter_(Star_Trek)#Transporter_accidents


44

Human Known Use of Atomic Operations 
• Another “human” known use of atomic 

operations is “apparition” in Harry Potter

See harrypotter.fandom.com/wiki/Apparition

https://harrypotter.fandom.com/wiki/Apparition


45

Human Known Use of Atomic Operations 
• Another “human” known use of atomic 

operations is “apparition” in Harry Potter

• If the user focuses properly they 
disappear from their current location & 
instantly reappear at the desired location

See harrypotter.fandom.com/wiki/Apparition

https://harrypotter.fandom.com/wiki/Apparition


46

Human Known Use of Atomic Operations 
• Another “human” known use of atomic 

operations is “apparition” in Harry Potter

• If the user focuses properly they 
disappear from their current location & 
instantly reappear at the desired location

• However, “spinching” occurs if a wizard 
or witch fails to apparate atomically!

See harrypotter.fandom.com/wiki/Splinching

https://harrypotter.fandom.com/wiki/Splinching


47

End of Atomic Classes 
& Operations (Part 1) 


