Java ReentrantlLock
[(Part o)

Douglas C. Schmidt
@ d.schmidt@uandernilt.edu
- www.dre.vanderhilt.edu/~schmidt

E ’ Institute for Software
Integrated Systems
Vanderbilt University

Nashuille, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

I will adopt Best Bractices
I will adopt Best Prachices
I will adogt Best Prachices
1 will adopt Best Brachice:
I will adopt Best Practices
1 will adopt Best Brachices
] will adopt Best Practices

I will adopt Best Brackices
] will adopt Best Practices
I will adogt Best Bractices
I will adopt Best Prachices

« Appreciate Java ReentrantLock
usage considerations

ReentrantLock Usage
Considerations

ReentrantLock Usage Considerations

« ReentrantLock must be used
via a “fully bracketed” protocol

}

void someMethod () {

ReentrantLock lock
= this.lock;

lock.lock() ;

try { ...

} finally {
lock.unlock () ;

}

The thread that acquires the lock
must be the one to release it

ReentrantLock Usage Considerations

 ReentrantLock must be used void someMethod () {
via a “fully bracketed” protocol ReentrantLock lock
- This design is known as . =ktllus]'{1°‘fk"
the “Scoped Locking' pattern tz; { ock() ;
} finally {

The finally clause ensures / lock.unlock ()
that the lock is released on }
all paths out the try clause

begin ## Enter the critical section. Lock

Acquire the lock automatically.d

M '
Execute the critical section. acquire
do_something (); |
~ release
Release the lock automatically. I

end ## Leave the critical section.

See www.dre.vanderbilt.edu/~schmidt/PDF/locking-patterns.pdf

http://www.dre.vanderbilt.edu/~schmidt/PDF/locking-patterns.pdf

ReentrantLock Usage Considerations

 ReentrantLock must be used void someMethod () {
via a “fully bracketed” protocol synchronized (this) {

}

}
« Implemented implicitly via

Java synchronized methods
& statements

See lesson on “Java Built-in Monitor Object’

ReentrantLock Usage Considerations

« ReentrantLock must be used void write_to_ file

via a “fully bracketed” protocol (std: :ofstream &file,
const std::string &msqg)

{

static std: :mutex mutex;

std: :lock guard<std::mutex>
lock (mutex) ;

 This pattern is commonly used file << msg << std::endl;
in C++ (& C#) via constructors
& destructors

See en.wikipedia.org/wiki/Resource Acquisition Is Initialization

http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization

ReentrantLock Usage Considerations

» ReentrantLock supports “recursive mutex” semantics where a lock may be
acquired multiple times by the same thread, without causing self-deadlock

Acquire (recursive)

, (lock count = lock count +1)
Acquire

(lock count = 1)

Initial
(lock count = 0)

Release
(lock count = 0)

Release (recursive)
(lock count = lock count - 1)

See en.wikipedia.org/wiki/Reentrant mutex

https://en.wikipedia.org/wiki/Reentrant_mutex

ReentrantLock Usage Considerations

« ReentrantLocks can be tedious
& error-prone to program due
to common traps & pitfalls

ReentrantLock Usage Considerations

« ReentrantLocks can be tedious
& error-prone to program due
to common traps & pitfalls, e.g.

 Holding a lock for a long
time without needing it

Locked Out?

void someMethod () {
ReentrantLock lock
= this.lock;
lock.lock () ;
try {
for (;;) {
// Do something that
// doesn’t involve lock

}
} finally {
lock.unlock() ;
}
}

10

ReentrantLock Usage Considerations

 ReentrantLocks can be tedious void someMethod () {
& error-prone to program due ReentrantLock lock
= this.lock;

to common traps & pitfalls, e.g.
lock.lock () ;

. // Critical section
return;
« Acquiring a lock & }
forgetting to release it

THE SPANISH NIGHT IS OVER
RED ROSES FOR MY LADY
THE POWER OF LOVE - ARE YOU LONESOME TONIGHT

11

ReentrantLock Usage Considerations

« ReentrantLocks can be tedious
& error-prone to program due
to common traps & pitfalls, e.g.

« Releasing a lock that was
never acquired

 or has already been
released

void someMethod () {
ReentrantLock lock
= this.lock;
// lock.lock() ;

try {
. // Critical section

} finally {
lock.unlock () ;

12

ReentrantLock Usage Considerations

« ReentrantLocks can be tedious void someMethod () {
& error-prone to program due ReentrantLock lock
to common traps & pitfalls, e.g. = this.lock;
// lock.lock() ;
try {
. // Critical section
} finally {

// lock.unlock() ;

 Accessing a resource without
acquiring a lock for it first

« or after releasing it

Compare with lesson on “Java Built-in Monitor Objects”

End of Java ReentrantLock
(Part 5)

14

