
Java ReentrantLock

(Part 5)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 

Integrated Systems 

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Understand how the concept of mutual 

exclusion in concurrent programs

• Recognize how Java ReentrantLock
provides mutual exclusion to 
concurrent programs

• Know the key methods defined by
the Java ReentrantLock class

• Learn how to use ReentrantLock
in Java programs

• Appreciate Java ReentrantLock
usage considerations



3

ReentrantLock Usage
Considerations



4

• ReentrantLock must be used 
via a “fully bracketed” protocol

void someMethod() {

ReentrantLock lock 

= this.lock;

lock.lock();

try { ... 

} finally { 

lock.unlock(); 

}

}

ReentrantLock Usage Considerations

The thread that acquires the lock 
must be the one to release it



5

• ReentrantLock must be used 
via a “fully bracketed” protocol

• This design is known as 
the “Scoped Locking” pattern

ReentrantLock Usage Considerations

See www.dre.vanderbilt.edu/~schmidt/PDF/locking-patterns.pdf

void someMethod() {

ReentrantLock lock 

= this.lock;

lock.lock();

try { ... 

} finally { 

lock.unlock(); 

}

}

The finally clause ensures 
that the lock is released on 
all paths out the try clause

http://www.dre.vanderbilt.edu/~schmidt/PDF/locking-patterns.pdf


6

• ReentrantLock must be used 
via a “fully bracketed” protocol

• This design is known as 
the “Scoped Locking” pattern

• Implemented implicitly via
Java synchronized methods 
& statements

ReentrantLock Usage Considerations

void someMethod() {

synchronized (this) {

... 

}

}

See lesson on “Java Built-in Monitor Object”



7

• ReentrantLock must be used 
via a “fully bracketed” protocol

• This design is known as 
the “Scoped Locking” pattern

• Implemented implicitly via
Java synchronized methods 
& statements

• This pattern is commonly used
in C++ (& C#) via constructors 
& destructors

void write_to_file

(std::ofstream &file,

const std::string &msg) 

{

static std::mutex mutex;

std::lock_guard<std::mutex> 

lock(mutex);

file << msg << std::endl;

}

ReentrantLock Usage Considerations

See en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization

http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization


8

• ReentrantLock supports “recursive mutex” semantics where a lock may be 
acquired multiple times by the same thread, without causing self-deadlock

ReentrantLock Usage Considerations

See en.wikipedia.org/wiki/Reentrant_mutex

https://en.wikipedia.org/wiki/Reentrant_mutex


9

• ReentrantLocks can be tedious 
& error-prone to program due 
to common traps & pitfalls

ReentrantLock Usage Considerations



10

• ReentrantLocks can be tedious 
& error-prone to program due 
to common traps & pitfalls, e.g.

• Holding a lock for a long 
time without needing it

ReentrantLock Usage Considerations

void someMethod() {

ReentrantLock lock 

= this.lock;

lock.lock();

try { 

for (;;) {

// Do something that 

// doesn’t involve lock

} 

} finally { 

lock.unlock(); 

}

}



11

• ReentrantLocks can be tedious 
& error-prone to program due 
to common traps & pitfalls, e.g.

• Holding a lock for a long 
time without needing it

• Acquiring a lock & 
forgetting to release it

ReentrantLock Usage Considerations

void someMethod() {

ReentrantLock lock 

= this.lock;

lock.lock();

... // Critical section

return;

}



12

• ReentrantLocks can be tedious 
& error-prone to program due 
to common traps & pitfalls, e.g.

• Holding a lock for a long 
time without needing it

• Acquiring a lock & 
forgetting to release it

• Releasing a lock that was
never acquired

• or has already been 
released

ReentrantLock Usage Considerations

void someMethod() {

ReentrantLock lock 

= this.lock;

// lock.lock();

try { 

... // Critical section 

} finally { 

lock.unlock(); 

}

}



13

• ReentrantLocks can be tedious 
& error-prone to program due 
to common traps & pitfalls, e.g.

• Holding a lock for a long 
time without needing it

• Acquiring a lock & 
forgetting to release it

• Releasing a lock that was
never acquired

• Accessing a resource without 
acquiring a lock for it first 

• or after releasing it

Compare with lesson on “Java Built-in Monitor Objects”

ReentrantLock Usage Considerations

void someMethod() {

ReentrantLock lock 

= this.lock;

// lock.lock();

try { 

... // Critical section 

} finally { 

// lock.unlock(); 

}

}



14

End of Java ReentrantLock
(Part 5)


