
Java ReentrantLock

(Part 3)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 

Integrated Systems 

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Understand how the concept of mutual 

exclusion in concurrent programs

• Recognize how Java ReentrantLock
provides mutual exclusion to 
concurrent programs

• Know the key methods defined by
the Java ReentrantLock class



3

Overview of Key 
ReentrantLock Methods



4

• It key methods acquire & 
release the lock

public class ReentrantLock

implements Lock, 

java.io.Serializable {

...

public void lock() { sync.lock(); }

public void lockInterruptibly() 

throws InterruptedException {

sync.acquireInterruptibly(1);

}

public boolean tryLock() {

return sync.nonfairTryAcquire(1); 

}

public void unlock() {

sync.release(1);

}

...

Overview of Key ReentrantLock Methods

See src/share/classes/java/util/concurrent/locks/ReentrantLock.java

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent/locks/ReentrantLock.java


5

• It key methods acquire & 
release the lock

public class ReentrantLock

implements Lock, 

java.io.Serializable {

...

public void lock() { sync.lock(); }

public void lockInterruptibly() 

throws InterruptedException {

sync.acquireInterruptibly(1);

}

public boolean tryLock() {

return sync.nonfairTryAcquire(1); 

}

public void unlock() {

sync.release(1);

}

...

Overview of Key ReentrantLock Methods

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Lock.html

These methods are defined 
in the Java Lock interface

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Lock.html


6

• It key methods acquire & 
release the lock

public class ReentrantLock

implements Lock, 

java.io.Serializable {

...

public void lock() { sync.lock(); }

public void lockInterruptibly() 

throws InterruptedException {

sync.acquireInterruptibly(1);

}

public boolean tryLock() {

return sync.nonfairTryAcquire(1); 

}

public void unlock() {

sync.release(1);

}

...

Overview of Key ReentrantLock Methods

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/AbstractQueuedSynchronizer.html

These methods simply forward 
to their implementor methods, 

which largely inherit from 
AbstractQueuedSynchronizer

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/AbstractQueuedSynchronizer.html


7

• It key methods acquire & 
release the lock

• lock() acquires the lock if 
it’s available

public class ReentrantLock

implements Lock, 

java.io.Serializable {

...

public void lock() { 

sync.lock(); 

}

...

Overview of Key ReentrantLock Methods



8

• It key methods acquire & 
release the lock

• lock() acquires the lock if 
it’s available

• If lock isn’t available its 
implementation depends 
on the “fairness” policy

public class ReentrantLock

implements Lock, 

java.io.Serializable {

...

public void lock() { 

sync.lock(); 

}

...

Overview of Key ReentrantLock Methods



9

• It key methods acquire & 
release the lock

• lock() acquires the lock if 
it’s available

• If lock isn’t available its 
implementation depends 
on the “fairness” policy

• Non-fair implementations 
are optimized in hardware

public class ReentrantLock

implements Lock, 

java.io.Serializable {

...

public void lock() { 

sync.lock(); 

}

...

Overview of Key ReentrantLock Methods

See en.wikipedia.org/wiki/Spinlock

http://en.wikipedia.org/wiki/Spinlock


10

• It key methods acquire & 
release the lock

• lock() acquires the lock if 
it’s available

• If lock isn’t available its 
implementation depends 
on the “fairness” policy

• Non-fair implementations 
are optimized in hardware

• Fair implementations “park” 
themselves on a wait queue
in FIFO order

public class ReentrantLock

implements Lock, 

java.io.Serializable {

...

public void lock() { 

sync.lock(); 

}

...

Overview of Key ReentrantLock Methods



11

• It key methods acquire & 
release the lock

• lock() acquires the lock if 
it’s available

• If lock isn’t available its 
implementation depends 
on the “fairness” policy

• lock() is not interruptible

public class ReentrantLock

implements Lock, 

java.io.Serializable {

...

public void lock() { 

sync.lock(); 

}

...

Overview of Key ReentrantLock Methods



12

• It key methods acquire & 
release the lock

• lock() acquires the lock if 
it’s available

• lockInterruptibly() acquires 
lock unless interrupted

public class ReentrantLock

implements Lock, 

java.io.Serializable {

...

public void lockInterruptibly() 

throws InterruptedException {

sync.acquireInterruptibly(1);

}

...

Overview of Key ReentrantLock Methods

See lesson on “Managing the Java Thread Lifecycle”



13

• It key methods acquire & 
release the lock

• lock() acquires the lock if 
it’s available

• lockInterruptibly() acquires 
lock unless interrupted

• tryLock() acquires lock only 
if it’s not held by another 
thread at invocation time

public class ReentrantLock

implements Lock, 

java.io.Serializable {

...

public boolean tryLock() { 

sync.nonfairTryAcquire(1); 

}

...

Overview of Key ReentrantLock Methods

Untimed tryLock() doesn’t honor fairness setting & can “barge”



14

• It key methods acquire & 
release the lock

• lock() acquires the lock if 
it’s available

• lockInterruptibly() acquires 
lock unless interrupted

• tryLock() acquires lock only 
if it’s not held by another 
thread at invocation time

• unlock() attempts to release 
the lock

public class ReentrantLock

implements Lock, 

java.io.Serializable {

...

public void unlock() {

sync.release(1);

}

...

Overview of Key ReentrantLock Methods



15

• It key methods acquire & 
release the lock

• lock() acquires the lock if 
it’s available

• lockInterruptibly() acquires 
lock unless interrupted

• tryLock() acquires lock only 
if it’s not held by another 
thread at invocation time

• unlock() attempts to release 
the lock

public class ReentrantLock

implements Lock, 

java.io.Serializable {

...

public void unlock() {

sync.release(1);

}

...

Overview of Key ReentrantLock Methods



16

• It key methods acquire & 
release the lock

• lock() acquires the lock if 
it’s available

• lockInterruptibly() acquires 
lock unless interrupted

• tryLock() acquires lock only 
if it’s not held by another 
thread at invocation time

• unlock() attempts to release 
the lock

• IllegalMonitorStateException
is thrown if calling thread 
doesn’t hold lock

public class ReentrantLock

implements Lock, 

java.io.Serializable {

...

public void unlock() {

sync.release(1);

}

...

Overview of Key ReentrantLock Methods

i.e., a ReentrantLock is “fully bracketed”!



17

• It key methods acquire & 
release the lock

• lock() acquires the lock if 
it’s available

• lockInterruptibly() acquires 
lock unless interrupted

• tryLock() acquires lock only 
if it’s not held by another 
thread at invocation time

• unlock() attempts to release 
the lock

• IllegalMonitorStateException
is thrown if calling thread 
doesn’t hold lock

• If hold count > 1 then lock 
is not released

public class ReentrantLock

implements Lock, 

java.io.Serializable {

...

public void unlock() {

sync.release(1);

}

...

Overview of Key ReentrantLock Methods

See en.wikipedia.org/wiki/Reentrant_mutex

unlocked

(holdCount = 0)

Critical Section

locked

(holdCount = 2)

T1

lock()

https://en.wikipedia.org/wiki/Reentrant_mutex


18

Overview of Other 
ReentrantLock Methods



19

• There are many other 
ReentrantLock methods

Overview of Other ReentrantLock Methods

boolean tryLock(long timeout, 

TimeUnit unit) – Acquires the 

lock if it is not held by another 

thread within the given waiting 

time and the current thread has 

not been interrupted

boolean isFair() – Returns true if this lock 

has fairness set true

boolean isLocked() – Queries if this lock 

is held by any thread

Condition newCondition() – Returns a 

Condition instance for use with 

this Lock instance

… …

These methods go above & beyond what’s available 
from Java’s synchronized statements/methods

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/ReentrantLock.htmltryLock(long, java.util.concurrent.TimeUnit)
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/ReentrantLock.htmlisFair()
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/ReentrantLock.htmlisLocked()
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/ReentrantLock.htmlnewCondition()


20

• There are many other 
ReentrantLock methods

Overview of Other ReentrantLock Methods

boolean tryLock(long timeout, 

TimeUnit unit) – Acquires the 

lock if it is not held by another 

thread within the given waiting 

time and the current thread has 

not been interrupted

boolean isFair() – Returns true if this lock 

has fairness set true

boolean isLocked() – Queries if this lock 

is held by any thread

Condition newCondition() – Returns a 

Condition instance for use with 

this Lock instance

… …

Timed tryLock() does honor fairness setting & can’t “barge”

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/ReentrantLock.htmltryLock(long, java.util.concurrent.TimeUnit)


21

• There are many other 
ReentrantLock methods

Overview of Other ReentrantLock Methods

boolean tryLock(long timeout, 

TimeUnit unit) – Acquires the 

lock if it is not held by another 

thread within the given waiting 

time and the current thread has 

not been interrupted

boolean isFair() – Returns true if this lock 

has fairness set true

boolean isLocked() – Queries if this lock 

is held by any thread

Condition newCondition() – Returns a 

Condition instance for use with 

this Lock instance

… …

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/ReentrantLock.htmlisFair()


22

• There are many other 
ReentrantLock methods

Overview of Other ReentrantLock Methods

boolean tryLock(long timeout, 

TimeUnit unit) – Acquires the 

lock if it is not held by another 

thread within the given waiting 

time and the current thread has 

not been interrupted

boolean isFair() – Returns true if this lock 

has fairness set true

boolean isLocked() – Queries if this lock 

is held by any thread

Condition newCondition() – Returns a 

Condition instance for use with 

this Lock instance

… …

Not very useful due to non-determinism of concurrency..

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/ReentrantLock.htmlisLocked()


23

• There are many other 
ReentrantLock methods

Overview of Other ReentrantLock Methods

boolean tryLock(long timeout, 

TimeUnit unit) – Acquires the 

lock if it is not held by another 

thread within the given waiting 

time and the current thread has 

not been interrupted

boolean isFair() – Returns true if this lock 

has fairness set true

boolean isLocked() – Queries if this lock 

is held by any thread

Condition newCondition() – Returns a 

Condition instance for use with 

this Lock instance

… …

See upcoming lesson on “Java ConditionObject”

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/ReentrantLock.htmlnewCondition()


24

End of Java 
ReentrantLock (Part 3)


