Java ReentrantlLock
[Part 2)

Douglas C. Schmidt
@ d.schmidt@uandernilt.edu
- www.dre.vanderhilt.edu/~schmidt

E ’ Institute for Software
Integrated Systems
Vanderbilt University

Nashuille, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

Waiting »Z

. threads
« Recognize how Java ReentrantLock *z
provides mutual exclusion to »g N

concurrent programs

Running
thread

»Zg

: Critical Section

Overview of
ReentrantLock

Overview of ReentrantLock

Provide mutual exclusion to public class ReentrantLock

concurrent Java programs implements Lock,
java.io.Serializable {

Class ReentrantLock

java.lang.Object
java.util.concurrent.locks.ReentrantLock

All Implemented Interfaces:

Serializable, Lock

public class ReentrantLock
extends Object
implements Lock, Serializable

A reentrant mutual exclusion Lock with the same basic behavior and semantics as the implicit monitor lock accessed using
synchronized methods and statements, but with extended capabilities.

A ReentrantLock is owned by the thread last successfully locking, but not yet unlocking it. A thread invoking 1 ock will return,
successfully acquiring the lock, when the lock is not owned by another thread. The method will return immediately if the current thread
already owns the lock. This can be checked using methods 1 sHeldByCurrentThread (). and getHoldCount ().

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantlLock.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantLock.html

Overview of ReentrantLock

 Provide mutual exclusion to public class ReentrantLock
concurrent Java programs implements Lock,

« Implements Lock interface Java.io.Serializable ({

Interface Lock

All Known Implementing Classes:

ReentrantLock, ReentrantReadWriteLock.ReadlLock, ReentrantReadWriteLock. WriteLock

public interface Lock

Lock implementations provide more extensive locking operations than can be obtained using synchroni zed methods and
statements. They allow more flexible structuring, may have quite different properties, and may support multiple associated
Condition objects.

A lock is a tool for controlling access to a shared resource by multiple threads. Commonly, a lock provides exclusive access to a shared
resource: only one thread at a time can acquire the lock and all access to the shared resource requires that the lock be acquired first.
However, some locks may allow concurrent access to a shared resource, such as the read lock of a ReadWriteLock.

The use of synchronil zed methods or statements provides access to the implicit monitor lock associated with every object, but
forces all lock acquisition and release to occur in a block-structured way: when multiple locks are acquired they must be released in the
opposite order, and all locks must be released in the same lexical scope in which they were acquired.

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Lock.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Lock.html

Overview of ReentrantLock

 Applies the Bridge pattern

ReentrantLock

public class ReentrantLock
implements Lock,
java.io.Serializable {

Decouples its interface from Jits
Implementation so fair & non-fair
semantics can be supported uniformly

operation() ¢

|<>|mp »rSync
operationimp()
DN
~ 77| imp.operationimp(); /k
FairSync NonFairSync
operationlmp() operationimp()

See en.wikipedia.org/wiki/Bridge pattern

http://en.wikipedia.org/wiki/Bridge_pattern

Overview of ReentrantLock

 Applies the Bridge pattern public class ReentrantLock

» Locking handled by Sync implements Lock,
Implementor hierarchy java.io.Serializable {

/** Performs sync mechanics */
final Sync sync;

Overview of ReentrantLock

 Applies the Bridge pattern public class ReentrantLock
» Locking handled by Sync implements Lock,
Implementor hierarchy java.io.Serializable {
« Inherits functionality from /** Performs sync mechanics */
AbstractQueuedSynchronizer final Sync sync;

/** Sync implementation for
ReentrantLock */
abstract static class
Sync extends
AbstractQueuedSynchronizer

{ ... 1}

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/locks/AbstractQueuedSynchronizer.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/AbstractQueuedSynchronizer.html

Overview of ReentrantLock

 Applies the Bridge pattern public class ReentrantLock
» Locking handled by Sync implements Lock,
Implementor hierarchy java.io.Serializable {
« Inherits functionality from /** Performs sync mechanics */
AbstractQueuedSynchronizer final Sync sync;

« Many Java synchronizers
that use FIFO wait queues
use this framework

/** Sync implementation for
ReentrantLock */
abstract static class
Sync extends
AbstractQueuedSynchronizer

{ ... 1}

See gee.cs.oswedgo.edu/dl/papers/aags.pdf

http://gee.cs.oswego.edu/dl/papers/aqs.pdf

Overview of ReentrantLock

 Applies the Bridge pattern public class ReentrantLock

» Locking handled by Sync implements Lock,
Implementor hierarchy java.io.Serializable {

);; Performs sync mechanics */
final Sync sync;
« Defines NonFairSync &
FairSync subclasses with
non-FIFO & FIFO semantics

/** Sync implementation for
ReentrantLock */
abstract static class
Sync extends
AbstractQueuedSynchronizer

{ ... 1}

static final class NonFairSync
extends Sync { ... }

static final class FairSync
extends Sync { ... }

See src/share/classes/java/util/concurrent/locks/ReentrantLock.java

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent/locks/ReentrantLock.java

Overview of ReentrantLock

 Applies the Bridge pattern public class ReentrantLock

» Locking handled by Sync implements Lock,
Implementor hierarchy java.io.Serializable {

public ReentrantLock
(boolean fair) {

» Defines NonFairSync & Syilc = fair
FairSync subclasses with F new I‘-:allffsl_fng 0N\
non-FIFO & FIFO semantics + new NonfairSync();

e Constructor enables use to
select fair or non-fair lock
acquisition model

This param determines whether
FairSync or NonfairSync is used

The Reentrantlock fair & non-fair models follow
the same pattern used by the Java Semaphore

Overview of ReentrantLock

 Applies the Bridge pattern

 Locking handled by Sync
Implementor hierarchy

« Defines NonFairSync &
FairSync subclasses with
non-FIFO & FIFO semantics

e Constructor enables use to
select fair or non-fair lock
acquisition model

public class ReentrantLock

implements Lock,

java.io.Serializable {

public ReentrantLock

(boolean fair) {

sync = fair
? new FairSync ()
: new NonfairSync() ;

Ensures strict "FIFO” fairness,
at the expense of performance

12

Overview of ReentrantLock

 Applies the Bridge pattern public class ReentrantLock

» Locking handled by Sync implements Lock,
Implementor hierarchy java.io.Serializable {

public ReentrantLock
(boolean fair) {

» Defines NonFairSync & sync = fair
FairSync subclasses with ? new §a1§8¥n§ 0
non-FIFO & FIFO semantics + mew NonfairSync();

- Constructor enables use to .. | Etnables faster performance
select fair or non-fair lock at the expense of fairness

acquisition model

13

Overview of ReentrantLock

 Applies the Bridge pattern public class ReentrantLock

» Locking handled by Sync implements Lock,
Implementor hierarchy java.io.Serializable {

public ReentrantLock
(boolean fair) {

» Defines NonFairSync & Syilc = fair
FairSync subclasses with F new I‘-:allffsl_fng 0
non-FIFO & FIFO semantics + new NonfairSync();

e Constructor enables use to
select fair or non-fair lock public ReentrantLock () {
acquisition model sync = new NonfairSync();

L /

The default behavior favors
performance over fairness

}

14

Overview of ReentrantLock

 Applies the Bridge pattern public class ReentrantLock

» Locking handled by Sync implements Lock,
Implementor hierarchy java.io.Serializable {

public ReentrantLock
(boolean fair) {

» Defines NonFairSync & Syilc = fair
FairSync subclasses with S| new I‘-:allffsl_fn: 0
non-FIFO & FIFO semantics + |new NonfairSync();

e Constructor enables use to
select fair or non-fair lock public| ReentrantLock () {

acquisition model sync|= new NonfairSync() ;
T }

}

FairSync is generally much slower than
NonfairSync, so use it accordingly

15

Overview of ReentrantLock

* ReentrantLock is similar to the

monitor lock provided by Java's Vofd lock() —Acquires the lock
built-in monitor objects void unlock() — Attempts to release
this lock

See upcoming lessons on “Java Built-in Monitor Object’

http://developer.android.com/reference/java/util/concurrent/locks/ReentrantLock.htmllock()
http://developer.android.com/reference/java/util/concurrent/locks/ReentrantLock.htmlunlock()
http://developer.android.com/reference/java/util/concurrent/locks/ReentrantLock.htmllockInterruptibly()
http://developer.android.com/reference/java/util/concurrent/locks/ReentrantLock.htmltryLock()
http://developer.android.com/reference/java/util/concurrent/locks/ReentrantLock.htmltryLock(long, java.util.concurrent.TimeUnit)

Overview of ReentrantLock

* ReentrantLock is similar to the

monitor lock provided by Java's Vofd lock() —Acquires the lock
built-in monitor objects void unlock() — Attempts to release
this lock

» But also provides extended _ _ |
capabilities void lockInterruptibly() — Acquires

the lock unless the current
thread is interrupted

boolean tryLock() — Acquires the lock
only if it is not held by another
thread at the time of invocation

boolean tryLock(long timeout, Timeunit
unit) — Acquires the lock if it is
not held by another thread
within the given waiting time
and the current thread has not
been interrupted

17

http://developer.android.com/reference/java/util/concurrent/locks/ReentrantLock.htmllock()
http://developer.android.com/reference/java/util/concurrent/locks/ReentrantLock.htmlunlock()
http://developer.android.com/reference/java/util/concurrent/locks/ReentrantLock.htmllockInterruptibly()
http://developer.android.com/reference/java/util/concurrent/locks/ReentrantLock.htmltryLock()
http://developer.android.com/reference/java/util/concurrent/locks/ReentrantLock.htmltryLock(long, java.util.concurrent.TimeUnit)

Overview of ReentrantLock

« ReentrantLock is similar to the
monitor lock provided by Java’s
built-in monitor objects
 But also provides extended
capabilities void lockInterruptibly() — Acquires
the lock unless the current
thread is interrupted

In contrast, Java’s synchronized methods/statements are not interruptible

http://developer.android.com/reference/java/util/concurrent/locks/ReentrantLock.htmllockInterruptibly()

Overview of ReentrantLock

« ReentrantLock is similar to the
monitor lock provided by Java’s
built-in monitor objects

 But also provides extended
capabilities

boolean tryLock() — Acquires the lock
only if it is not held by another
thread at the time of invocation

boolean tryLock(long timeout, Timeunit
unit) — Acquires the lock if it is
not held by another thread
within the given waiting time
and the current thread has not
been interrupted

Likewise, Java’s synchronized methods/statements aren’t non-blocking

http://developer.android.com/reference/java/util/concurrent/locks/ReentrantLock.htmltryLock()
http://developer.android.com/reference/java/util/concurrent/locks/ReentrantLock.htmltryLock(long, java.util.concurrent.TimeUnit)

Overview of ReentrantLock

» A ReentrantLock supports “recursive
mutex” semantics

Ty

[unlocked] lock()
(holdCount = 0)
_}

locked

)

Critical Section

2 [(hoIdCount =1)

See en.wikipedia.org/wiki/Reentrant _mutex

http://en.wikipedia.org/wiki/Reentrant_mutex

Overview of ReentrantLock

» A ReentrantLock supports “recursive
mutex” semantics

« The thread that hold the mutex can

reacquire it without self-deadlock

unlocked
(holdCount = 0)

Critical Section

Ty

] lock()
_}

[

(holdCount = 1)

locked

)

21

Overview of ReentrantLock

» A ReentrantLock supports “recursive
mutex” semantics

» The thread that hold the mutex can [uniocked] lock()
R (holdCount = 0)
reacquire it without self-deadlock -»Z
T (]

locked
(holdCount = 2)

Critical Section

22

Overview of ReentrantLock

 Recursive mutex semantics add @ boolean nonfairTryAcquire

bit more overhead relative to non- (int acquires) {
recursive semantics due to extra Thread t =
software logic & synchronization Thread.currentThread() ;

int c¢c = getState() ;
if (¢ == 0) {
if (compareAndSetState (0,
acquires)) {
setExclusiveOwnerThread (t) ;
return true;

}
- .}f \ - } else if (t ==

getExclusiveOwnerThread()) ({
— - int nextc = c + acquires;

setState (nextc) ;
return true;

}

return false;

See src/share/classes/java/util/concurrent/locks/ReentrantLock.java

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent/locks/ReentrantLock.java

Overview of ReentrantLock

 Recursive mutex semantics add @ boolean nonfairTryAcquire

bit more overhead relative to non- (int acquires) {
recursive semantics due to extra Thread t =
software logic & synchronization Thread.currentThread() ;

int c¢c = getState() ;
if (¢ == 0) {
if (compareAndSetState (0,
acquires)) {
setExclusiveOwnerThread (t) ;
return true;

Atomically acquire the }
lock If it’s available } else if (t ==
getExclusiveOwnerThread()) {
int nextc = ¢ + acquires;

setState (nextc) ;
return true;

}

return false;

See src/share/classes/java/util/concurrent/locks/ReentrantLock.java

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent/locks/ReentrantLock.java

Overview of ReentrantLock

 Recursive mutex semantics add @ boolean nonfairTryAcquire

bit more overhead relative to non- (int acquires) {
recursive semantics due to extra Thread t =
software logic & synchronization Thread.currentThread() ;

int c¢c = getState() ;
if (¢ == 0) {
if (compareAndSetState (0,
acquires)) {
setExclusiveOwnerThread (t) ;
return true;
}
} else i1f (t ==
getExclusiveOwnerThread ()) ({
int nextc = ¢ + acquires;

Simply increment lock setState (nextc) ;
count if the current return true;
thread is lock owner }

return false;

See src/share/classes/java/util/concurrent/locks/ReentrantLock.java

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent/locks/ReentrantLock.java

Overview of ReentrantLock

« ReentrantLock semantics are useful
for frameworks that hold locks during

callbacks to user code

mLock.lock () ;
try {
mCancelled = true;
mSchedExeSvc
.shutdownNow () ;
} finally {
mLock.unlock () ;

}

cDTimer: CountDownTimer

start() -

| ﬂ mLock
onFinish() ;

| 0
cancel()

| timerHandler
onTick() run()
n '

if (...)
cancel () ;

N

mLock.lock () ;

try {
onTick (millisLeft);
} finally {

mLock.unlock () ;
}

See github.com/douglascraigschmidt/LivelL essons/tree/master/Java8/ex24

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex24

Overview of ReentrantLock

« ReentrantLock semantics are useful
for frameworks that hold locks during

callbacks to user code

mLock.lock () ;
try {
mCancelled = true;
mSchedExeSvc
.shutdownNow () ;
} finally {
mLock.unlock () ;

}

cDTimer: CountDownTimer

sTart() @ mLock

onFinish()

| .
cancel()

| timerHandler
onTick() run()

\

N

mLock.lock () ;

if (...)

cancel () ; —
()/A///

try {

onTick(millisLeft) ;

Framework calls onTick() hook } finally {
method with the mLock held mLock .unlock () ;

}

27

Overview of ReentrantLock

* ReentrantLock semantics are useful

) cDTimer: CountDownTimer
for frameworks that hold locks during

callbacks to user code sTartO ﬁ Lk
' mLock.lock () ; 1 onFinish()
try { | -
mCancelled = true; cancel() timerHandler
mSchedExeSvc |.
.shutdownNow () ; pln Tick() lr_un()
} finally { \

mLock.unlock () ; \\\

.} mLock.lock () ;
if (...) try {

cancel () ;
/.

/

The app-defined onTick()
hook method can call cance/

onTick (millisLeft) ;

} finally {
mLock.unlock () ;
}

See github.com/douglascraigschmidt/LivelL essons/tree/master/Java8/ex24

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex24

Overview of ReentrantLock

- ReentrantLock semantics are useful T e e e
for frameworks that hold locks during
start ""
callbacks to user code | 0 () miock
| mLock. lock () ; ’ onFinish()
try { | 0
— . cance
mCancelled = true; | Py e
mSchedExeSvc -
shutdownNow () ; onTick() run)
} finally { | \
mLock.unlock () ; \\\
.} \ mLock. lock () ;
if (...) try {
cancel () ; . ..
onTick (millisLeft);
cancel() also acquires mLock, which must } finally {
be recursive or self-deadlock will occur mLock .unlock () ;
}

See github.com/douglascraigschmidt/LivelL essons/tree/master/Java8/ex24

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex24

End of Java
ReentrantLock (Part 2)

30

