Java ReentrantlLock
[(Part 1)

Douglas C. Schmidt
@ d.schmidt@uandernilt.edu
- www.dre.vanderhilt.edu/~schmidt

E ’ Institute for Software
Integrated Systems
Vanderbilt University

Nashuille, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand how the concept of mutual Waitin
exclusion in concurrent programs 9 *Z

threads g

_>
-@ N
Critical

Section
*Z Running
thread

See en.wikipedia.org/wiki/Mutual exclusion

http://en.wikipedia.org/wiki/Mutual_exclusion

Overview of Mutual
Exclusion Locks

Overview of Mutual Exclusion Locks

« A mutual exclusion lock (mutex)

defines a “critical section” A critical section is group of
Instructions or region of code that
must be executed atomically

Critical
Section

See en.wikipedia.org/wiki/Critical section

https://en.wikipedia.org/wiki/Critical_section

Overview of Mutual Exclusion Locks

« A mutual exclusion lock (mutex)
defines a “critical section”

 Ensures only one thread can run _,Z
in a block of code at a time

Critical
Section

Overview of Mutual Exclusion Locks

« A mutual exclusion lock (mutex)
defines a “critical section”

« Ensures only one thread can run
in a block of code at a time

Critical
Section

_>§ Acquire lock

Overview of Mutual Exclusion Locks

« A mutual exclusion lock (mutex)
defines a “critical section”

« Ensures only one thread can run
in a block of code at a time

Critical
Section
*Z Running

thread

Overview of Mutual Exclusion Locks

« A mutual exclusion lock (mutex)

defines a “critical section” Waiting Z
threads Z

™

« Other threads are kept “at bay”

get by concurrent operations - unning

thread

* Prevent corruption of shared Critical
(mutable) data that can be set/ || saction Z

v
I
w

Other threads must obey the locking protocol or chaos will ensue!!

Overview of Mutual Exclusion Locks

« A mutual exclusion lock (mutex) Waitin
defines a “critical section” g "Z
threads _>Z

» Other threads are kept “at bay” !'

Critical

Section
‘ _>< Running

« Race conditions could occur if threads

multiple threads run within a

critical section/ "

Race conditions can arise when

a program depends on the
sequence or timing of threads
for it to operate properly

See en.wikipedia.org/wiki/Race condition

http://en.wikipedia.org/wiki/Race_condition

Overview of Mutual Exclusion Locks

« A mutual exclusion lock (mutex)

defines a “critical section” ,;’/gargla/gs Z
g
4
 After a thread leaves a critical Critical
section another thread can Section

enter & start running

ﬁf

Release lock

10

Overview of Mutual Exclusion Locks

« A mutual exclusion lock (mutex)

defines a “critical section” Waiting "Z
threads _>Z

« After a thread leaves a critical Critical Acquire lock

section another thread can Section
enter & start running

™

11

Overview of Mutual Exclusion Locks

« A mutual exclusion lock (mutex)

defines a “critical section” ,;’/gargla/gs _>Z
20
!P
 After a thread leaves a critical Critical
section another thread can Section
Running
_>Z thread

enter & start running

12

Overview of Mutual Exclusion Locks

« A mutex is typically implemented
in hardware via atomic operations

Atomic operations appear to /
occur instantaneously & either
change the state of the system
successful or have no effect

See en.wikipedia.org/wiki/Linearizability

http://en.wikipedia.org/wiki/Linearizability

Overview of Mutual Exclusion Locks

« A mutex is typically implemented
in hardware via atomic operations

- Implemented in Java via the
compareAndSwap*() methods
in the Unsafe class

Concurrency

And few words about concurrency with Unsafe. compareAndSwap methods
are atomic and can be used to implement high-performance lock-free data

structures.

For example, consider the problem to increment value in the shared object

using lot of threads.

First we define simple interface Counter:

interface Counter {
vold increment();
long getCounter();

}

Then we define worker thread Counterclient, that uses Counter:

class CounterClient implements Runnable {
private Counter c;

private int num;

public CounterClient(Counter c, int num) {

this.c = ¢;
this.num = num;
}
@override

public void run() {
for (int i = @; 1 < num; i++) {
c.increment();
}
}
}

See earlier discussion of “Java Atomic Classes & Operations”

Human Known Use of
Mutual Exclusion Locks

15

Human Known Use of Mutual Exclusion Locks

« A human known use of
mutual exclusion locks is an
airplane restroom protocol

16

Human Known Use of Mutual Exclusion Locks

« A human known use of
mutual exclusion locks is an
airplane restroom protocol

Person can only enter if
the restroom is vacant

17

Human Known Use of Mutual Exclusion Locks

« A human known use of
mutual exclusion locks is an
airplane restroom protocol

lock door

Person atomically
enters & locks the door

18

Human Known Use of Mutual Exclusion Locks

« A human known use of

mutual exclusion locks is an lock door
airplane restroom protocol

Other people who want to use the
restroom must wait while its in use

19

Human Known Use of Mutual Exclusion Locks

« A human known use of
mutual exclusion locks is an
airplane restroom protocol

unlock door

This protocol is “"fully-bracketed,”
.e., person who locks must be the
same as the person who unlocks

20

Human Known Use of Mutual Exclusion Locks

« A human known use of
mutual exclusion locks is an
airplane restroom protocol

Once the restroom is vacant
another person can enter

21

End of Java
ReentrantLock (Part 1)

22

