
Java ReentrantLock

(Part 1)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand how the concept of mutual

exclusion in concurrent programs

See en.wikipedia.org/wiki/Mutual_exclusion

Waiting
threads

Critical
Section

Running
thread

http://en.wikipedia.org/wiki/Mutual_exclusion

3

Overview of Mutual
Exclusion Locks

4

• A mutual exclusion lock (mutex)
defines a “critical section”

Overview of Mutual Exclusion Locks

Critical
Section

See en.wikipedia.org/wiki/Critical_section

A critical section is group of
instructions or region of code that

must be executed atomically

https://en.wikipedia.org/wiki/Critical_section

5

• A mutual exclusion lock (mutex)
defines a “critical section”

• Ensures only one thread can run
in a block of code at a time

Overview of Mutual Exclusion Locks

Critical
Section

6

Critical
Section

• A mutual exclusion lock (mutex)
defines a “critical section”

• Ensures only one thread can run
in a block of code at a time

Overview of Mutual Exclusion Locks

Acquire lock

7

• A mutual exclusion lock (mutex)
defines a “critical section”

• Ensures only one thread can run
in a block of code at a time

Critical
Section

Running
thread

Overview of Mutual Exclusion Locks

8

• A mutual exclusion lock (mutex)
defines a “critical section”

• Ensures only one thread can run
in a block of code at a time

• Other threads are kept “at bay”

• Prevent corruption of shared
(mutable) data that can be set/
get by concurrent operations

Critical
Section

Running
thread

Overview of Mutual Exclusion Locks

Waiting
threads

Other threads must obey the locking protocol or chaos will ensue!!

9

• A mutual exclusion lock (mutex)
defines a “critical section”

• Ensures only one thread can run
in a block of code at a time

• Other threads are kept “at bay”

• Prevent corruption of shared
(mutable) data that can be set/
get by concurrent operations

• Race conditions could occur if
multiple threads run within a
critical section

Critical
Section

Running
threads

Overview of Mutual Exclusion Locks

Waiting
threads

See en.wikipedia.org/wiki/Race_condition

Race conditions can arise when
a program depends on the

sequence or timing of threads
for it to operate properly

http://en.wikipedia.org/wiki/Race_condition

10

• A mutual exclusion lock (mutex)
defines a “critical section”

• Ensures only one thread can run
in a block of code at a time

• Other threads are kept “at bay”

• After a thread leaves a critical
section another thread can
enter & start running

Critical
Section

Overview of Mutual Exclusion Locks

Release lock

Waiting
threads

11

• A mutual exclusion lock (mutex)
defines a “critical section”

• Ensures only one thread can run
in a block of code at a time

• Other threads are kept “at bay”

• After a thread leaves a critical
section another thread can
enter & start running

Critical
Section

Overview of Mutual Exclusion Locks

Waiting
threads

Acquire lock

12

• A mutual exclusion lock (mutex)
defines a “critical section”

• Ensures only one thread can run
in a block of code at a time

• Other threads are kept “at bay”

• After a thread leaves a critical
section another thread can
enter & start running

Critical
Section

Overview of Mutual Exclusion Locks

Waiting
threads

Running
thread

13

• A mutex is typically implemented
in hardware via atomic operations

Overview of Mutual Exclusion Locks

See en.wikipedia.org/wiki/Linearizability

Atomic operations appear to
occur instantaneously & either
change the state of the system

successful or have no effect

http://en.wikipedia.org/wiki/Linearizability

14

• A mutex is typically implemented
in hardware via atomic operations

• Implemented in Java via the
compareAndSwap*() methods
in the Unsafe class

Overview of Mutual Exclusion Locks

See earlier discussion of “Java Atomic Classes & Operations”

15

Human Known Use of
Mutual Exclusion Locks

16

• A human known use of
mutual exclusion locks is an
airplane restroom protocol

Human Known Use of Mutual Exclusion Locks

17

• A human known use of
mutual exclusion locks is an
airplane restroom protocol

Human Known Use of Mutual Exclusion Locks

Person can only enter if
the restroom is vacant

18

lock door

• A human known use of
mutual exclusion locks is an
airplane restroom protocol

Human Known Use of Mutual Exclusion Locks

Person atomically
enters & locks the door

19

lock door

• A human known use of
mutual exclusion locks is an
airplane restroom protocol

Human Known Use of Mutual Exclusion Locks

Other people who want to use the
restroom must wait while it’s in use

20

unlock door

• A human known use of
mutual exclusion locks is an
airplane restroom protocol

Human Known Use of Mutual Exclusion Locks

This protocol is “fully-bracketed,”
i.e., person who locks must be the
same as the person who unlocks

21

• A human known use of
mutual exclusion locks is an
airplane restroom protocol

Human Known Use of Mutual Exclusion Locks

Once the restroom is vacant
another person can enter

22

End of Java
ReentrantLock (Part 1)

