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Learning Objectives in this Part of the Lesson

« Understand how the concept of mutual Waitin
exclusion in concurrent programs 9 *Z
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See en.wikipedia.org/wiki/Mutual exclusion
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Overview of Mutual
Exclusion Locks




Overview of Mutual Exclusion Locks

« A mutual exclusion lock (mutex)

defines a “critical section” A critical section is group of
Instructions or region of code that
must be executed atomically

Critical
Section

See en.wikipedia.org/wiki/Critical section
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Overview of Mutual Exclusion Locks

« A mutual exclusion lock (mutex)
defines a “critical section”

 Ensures only one thread can run _,Z
in a block of code at a time

Critical
Section
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Overview of Mutual Exclusion Locks

« A mutual exclusion lock (mutex)

defines a “critical section” Waiting Z
threads Z

™

« Other threads are kept “at bay”

get by concurrent operations - unning

thread

* Prevent corruption of shared Critical
(mutable) data that can be set/ || saction Z

v
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Other threads must obey the locking protocol or chaos will ensue!!




Overview of Mutual Exclusion Locks

« A mutual exclusion lock (mutex) Waitin
defines a “critical section” g "Z
threads _>Z

» Other threads are kept “at bay” !'

Critical
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« Race conditions could occur if threads

multiple threads run within a

critical section/ "

Race conditions can arise when

a program depends on the
sequence or timing of threads
for it to operate properly

See en.wikipedia.org/wiki/Race condition
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Overview of Mutual Exclusion Locks

« A mutual exclusion lock (mutex)

defines a “critical section” ,;’/gargla/gs Z
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 After a thread leaves a critical Critical
section another thread can Section

enter & start running
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Overview of Mutual Exclusion Locks

« A mutual exclusion lock (mutex)

defines a “critical section” ,;’/gargla/gs _>Z
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Overview of Mutual Exclusion Locks

« A mutex is typically implemented
in hardware via atomic operations

Atomic operations appear to /
occur instantaneously & either
change the state of the system
successful or have no effect

See en.wikipedia.org/wiki/Linearizability
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Overview of Mutual Exclusion Locks

« A mutex is typically implemented
in hardware via atomic operations

- Implemented in Java via the
compareAndSwap*() methods
in the Unsafe class

Concurrency

And few words about concurrency with Unsafe. compareAndSwap methods
are atomic and can be used to implement high-performance lock-free data

structures.

For example, consider the problem to increment value in the shared object

using lot of threads.

First we define simple interface Counter:

interface Counter {
vold increment();
long getCounter();

}

Then we define worker thread Counterclient, that uses Counter:

class CounterClient implements Runnable {
private Counter c;

private int num;

public CounterClient(Counter c, int num) {

this.c = ¢;
this.num = num;
}
@override

public void run() {
for (int i = @; 1 < num; i++) {
c.increment();
}
}
}

See earlier discussion of “Java Atomic Classes & Operations”




Human Known Use of
Mutual Exclusion Locks
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Human Known Use of Mutual Exclusion Locks

« A human known use of
mutual exclusion locks is an
airplane restroom protocol
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Human Known Use of Mutual Exclusion Locks

« A human known use of
mutual exclusion locks is an
airplane restroom protocol

Person can only enter if
the restroom is vacant

17



Human Known Use of Mutual Exclusion Locks

« A human known use of
mutual exclusion locks is an
airplane restroom protocol

lock door

Person atomically
enters & locks the door
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Human Known Use of Mutual Exclusion Locks

« A human known use of

mutual exclusion locks is an lock door
airplane restroom protocol

Other people who want to use the
restroom must wait while its in use
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Human Known Use of Mutual Exclusion Locks

« A human known use of
mutual exclusion locks is an
airplane restroom protocol

unlock door

This protocol is “"fully-bracketed,”
.e., person who locks must be the
same as the person who unlocks

20



Human Known Use of Mutual Exclusion Locks

« A human known use of
mutual exclusion locks is an
airplane restroom protocol

Once the restroom is vacant
another person can enter
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End of Java
ReentrantLock (Part 1)
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