
Overview of Java

Synchronizers

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 

Integrated Systems 

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Lesson
• Understand the categories of capabilities provided by Java synchronizers

Category Definition

Atomic 
operations

An action that effectively happens 
all at once or not at all

Mutual 
exclusion

Allows concurrent access & 
updates to shared data without 
race conditions

Coordination Ensures computations run 
properly, e.g., in the right order, at 
the right time, under the right 
conditions, etc.

Barrier 
synchronization

Ensures that any thread(s) must 
stop at a certain point & cannot 
proceed until all other thread(s) 
reach this barrier



3

• Understand the categories of capabilities provided by Java synchronizers

Learning Objectives in this Lesson

Category Definition

Atomic 
operations

An action that effectively happens 
all at once or not at all

Mutual 
exclusion

Allows concurrent access & 
updates to shared mutable data 
without race conditions

Coordination Ensures computations run 
properly, e.g., in the right order, at 
the right time, under the right 
conditions, etc.

Barrier 
synchronization

Ensures that any thread(s) must 
stop at a certain point & cannot 
proceed until all other thread(s) 
reach this barrier



4

• Understand the categories of capabilities provided by Java synchronizers

Learning Objectives in this Lesson

Category Definition

Atomic 
operations

An action that effectively happens 
all at once or not at all

Mutual 
exclusion

Allows concurrent access & 
updates to shared mutable data 
without race conditions

Coordination Ensures computations run 
properly, e.g., in the right order, at 
the right time, under the right 
conditions, etc.

Barrier 
synchronization

Ensures that any thread(s) must 
stop at a certain point & cannot 
proceed until all other thread(s) 
reach this barrier



5

• Understand the categories of capabilities provided by Java synchronizers

Learning Objectives in this Lesson

Category Definition

Atomic 
operations

An action that effectively happens 
all at once or not at all

Mutual 
exclusion

Allows concurrent access & 
updates to shared mutable data 
without race conditions

Coordination Ensures computations run 
properly, e.g., in the right order, at 
the right time, under the right 
conditions, etc.

Barrier 
synchronization

Ensures that any thread(s) must 
stop at a certain point & cannot 
proceed until all other thread(s) 
reach this barrier



6

• Understand the categories of capabilities provided by Java synchronizers

Learning Objectives in this Lesson

Category Definition

Atomic 
operations

An action that effectively happens 
all at once or not at all

Mutual 
exclusion

Allows concurrent access & 
updates to shared mutable data 
without race conditions

Coordination Ensures computations run 
properly, e.g., in the right order, at 
the right time, under the right 
conditions, etc.

Barrier 
synchronization

Ensures that any thread(s) must 
stop at a certain point & cannot 
proceed until all other thread(s) 
reach this barrier



7

Overview of Java 
Synchronizers



8

• A Java synchronizer is an object use to
control the flow of cooperating threads 
based on its state

See en.wikipedia.org/wiki/Synchronization_(computer_science)

Overview of Java Synchronizers

https://en.wikipedia.org/wiki/Synchronization_(computer_science)


9

• Java synchronizers ensure interactions between threads obey certain 
properties

Overview of Java Synchronizers



10

• Java synchronizers ensure interactions between threads obey certain 
properties, e.g.

• Don’t corrupt shared 
mutable data

Overview of Java Synchronizers



11

• Java synchronizers ensure interactions between threads obey certain 
properties, e.g.

• Don’t corrupt shared 
mutable data

Overview of Java Synchronizers

class AtomicOps { 

long mCounter = 0; 

void increment() { 

// Thread T1
for (;;) mCounter++; 

} 

void decrement() { 

// Thread T2
for (;;) mCounter--;

} 

...

} 

Running increment() & 
decrement() concurrently 
yields undefined behavior 
since mCounter is shared 

mutable data



12

• Java synchronizers ensure interactions between threads obey certain 
properties, e.g.

• Don’t corrupt shared 
mutable data

Overview of Java Synchronizers

class AtomicOps { 

long mCounter = 0; 

synchronized void increment() { 

// Thread T1
for (;;) mCounter++; 

} 

synchronized void decrement() { 

// Thread T2
for (;;) mCounter--;

} 

...

} 

Running increment() & decrement() concurrently yields correct 
behavior since mCounter is synchronized shared mutable data



13

• Java synchronizers ensure interactions between threads obey certain 
properties, e.g.

• Don’t corrupt shared 
mutable data

• Occur in the right order, at 
the right time, & under the 
right conditions 

Overview of Java Synchronizers



14

% java PingPongWrong
Ready...Set...Go!
Ping!(1)
Ping!(2)
Ping!(3)
Ping!(4)
Ping!(5)
Ping!(6)
Ping!(7)
Ping!(8)
Ping!(9)
Ping!(10)
Pong!(1)
Pong!(2)
Pong!(3)
Pong!(4)
Pong!(5)
Pong!(6)
Pong!(7)
Pong!(8)
Pong!(9)
Pong!(10)
Done!

• Java synchronizers ensure interactions between threads obey certain 
properties, e.g.

• Don’t corrupt shared 
mutable data

• Occur in the right order, at 
the right time, & under the 
right conditions 

Overview of Java Synchronizers

run()

ping : 

Thread

pong :

Thread

print("ping")

run()

print("pong")

The unsynchronized 
version is buggy



15

• Java synchronizers ensure interactions between threads obey certain 
properties, e.g.

• Don’t corrupt shared 
mutable data

• Occur in the right order, at 
the right time, & under the 
right conditions 

Overview of Java Synchronizers

run()

ping : 

Thread

pong :

Thread

print("ping")

run()

print("pong")

% java PlayPingPong
Ready...Set...Go!
Ping!(1)
Pong!(1)
Ping!(2)
Pong!(2)
Ping!(3)
Pong!(3)
Ping!(4)
Pong!(4)
Ping!(5)
Pong!(5)
Ping!(6)
Pong!(6)
Ping!(7)
Pong!(7)
Ping!(8)
Pong!(8)
Ping!(9)
Pong!(9)
Ping!(10)
Pong!(10)
Done!

The synchronized 
version coordinates 
the threads properly



16

Java Synchronizers Address 
Inherent Complexities



17

Java Synchronizers Address Inherent Complexities
• Java synchronizers address inherent 

complexities of concurrency

Inherent complexities are the “rocket science” of software development



18

• Java synchronizers address inherent 
complexities of concurrency, e.g.

• Atomic ordering

• Ensures an action happens all 
at once or not at all

See en.wikipedia.org/wiki/Linearizability

Java Synchronizers Address Inherent Complexities

https://en.wikipedia.org/wiki/Linearizability


19

• Java synchronizers address inherent 
complexities of concurrency, e.g.

• Atomic ordering

• Ensures an action happens all 
at once or not at all

• Operations on a field in thread1

occur all at once wrt operations 
on the field in thread2..n

Thread1 Thread2

Long 
field

initialized 0

read field ← 0

increase
field by 1

0

write back → 1

read field ← 1

increase
field by 1

1

write back → 2

ti
m

e

See docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

Atomicity does not occur on primitive Java 
data types without using synchronizers

Java Synchronizers Address Inherent Complexities

https://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html


20

• Java synchronizers address inherent 
complexities of concurrency, e.g.

• Atomic ordering

• Ensures an action happens all 
at once or not at all

• Operations on a field in thread1

occur all at once wrt operations 
on the field in thread2..n

• Atomic ordering is supported by
the Java atomic package

Java Synchronizers Address Inherent Complexities

See docs.oracle.com/javase/8/docs/api/java/
util/concurrent/atomic/package-summary.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html


21

• Java synchronizers address inherent 
complexities of concurrency, e.g.

• Atomic ordering

• Ensures an action happens all 
at once or not at all

• Operations on a field in thread1

occur all at once wrt operations 
on the field in thread2..n

• Atomic ordering is supported by
the Java atomic package

• Atomic ordering is also supported 
by the Java volatile type qualifier

Java Synchronizers Address Inherent Complexities

See en.wikipedia.org/wiki/Volatile_variable#In_Java

Main Memory

42 13

nv v

Cache 1

42 13

nv v

Cache n

42 13

nv v

ThreadnThread1

The volatile type qualifier ensures a variable is read 
from & written to main memory & not cached

http://en.wikipedia.org/wiki/Volatile_variable#In_Java


22

• Java synchronizers address inherent 
complexities of concurrency, e.g.

• Atomic ordering

• Mutual exclusion 

• Prevents simultaneous access 
to a shared resource in a 
critical section

See en.wikipedia.org/wiki/Mutual_exclusion

Java Synchronizers Address Inherent Complexities

https://en.wikipedia.org/wiki/Mutual_exclusion


23
See en.wikipedia.org/wiki/
Race_condition#Software

• Java synchronizers address inherent 
complexities of concurrency, e.g.

• Atomic ordering

• Mutual exclusion 

• Prevents simultaneous access 
to a shared resource in a 
critical section

Thread1

Thread2

Race conditions occur when a program 
depends on the sequence or timing 
of threads for it to operate properly

Shared State

Java Synchronizers Address Inherent Complexities

https://en.wikipedia.org/wiki/Race_condition#Software


24

• Java synchronizers address inherent 
complexities of concurrency, e.g.

• Atomic ordering

• Mutual exclusion 

• Prevents simultaneous access 
to a shared resource in a 
critical section

• Read/write conflicts

• If one thread reads while another 
thread writes concurrently, the field 
that’s read may be inconsistent

Two operations conflict
if at least one is a write

ti
m

e

Thread1 Thread2

Long 
field

initialized 0

read field ← 0

increase
field by 1

0

write back read field
←
→

0 or 
1?

Java Synchronizers Address Inherent Complexities



25

• Java synchronizers address inherent 
complexities of concurrency, e.g.

• Atomic ordering

• Mutual exclusion 

• Prevents simultaneous access 
to a shared resource in a 
critical section

• Read/write conflicts

• Write/write conflicts

• If two threads try to write to same 
field concurrently, the result may 
be inconsistent

ti
m

e

Thread1 Thread2

Long 
field

initialized 0

read field ← 0

read field ← 0

increase
field by 2

0

increase
field by 1

0

write back write back →
1 or 
2?

Java Synchronizers Address Inherent Complexities



26

• Java synchronizers address inherent 
complexities of concurrency, e.g.

• Atomic ordering

• Mutual exclusion 

• Prevents simultaneous access 
to a shared resource in a 
critical section

• Read/write conflicts

• Write/write conflicts

See en.wikipedia.org/wiki/Memory_ordering

These problems often occur in multi-core processors with “weak” memory 
ordering due to core caches that allow “out-of-order” load & store operations

Java Synchronizers Address Inherent Complexities

https://en.wikipedia.org/wiki/Memory_ordering


27

• Java synchronizers address inherent 
complexities of concurrency, e.g.

• Atomic ordering

• Mutual exclusion 

• Prevents simultaneous access 
to a shared resource in a 
critical section

• Read/write conflicts

• Write/write conflicts

• Mutual exclusion is supported 
by the Java locks package

• e.g., ReentrantLock, Reentrant
ReadWriteLock, StampedLock,
etc.

Java Synchronizers Address Inherent Complexities

See docs.oracle.com/javase/8/docs/api/java/
util/concurrent/locks/package-summary.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/package-summary.html


28

• Java synchronizers address inherent 
complexities of concurrency, e.g.

• Atomic ordering

• Mutual exclusion 

• Prevents simultaneous access 
to a shared resource in a 
critical section

• Read/write conflicts

• Write/write conflicts

• Mutual exclusion is supported 
by the Java locks package

• Mutual exclusion is also supported
by the synchronized keyword

in Java built-in monitor objects

Java Synchronizers Address Inherent Complexities

See www.artima.com/insidejvm/ed2/threadsynch.html

Thread T1

put() take()

Thread T2

Synchronized
Queue
Java 

Monitor Object

synchronized put()
synchronized take()

<<contains>> 1 <<contains>>1

Wait Queue Entrance Queue

wait()
notify()
notifyAll()

http://www.artima.com/insidejvm/ed2/threadsynch.html


29

• Java synchronizers address inherent 
complexities of concurrency, e.g.

• Atomic ordering

• Mutual exclusion 

• Coordination 

• Ensures computations run 
properly

Java Synchronizers Address Inherent Complexities



30

• Java synchronizers address inherent 
complexities of concurrency, e.g.

• Atomic ordering

• Mutual exclusion 

• Coordination 

• Ensures computations run 
properly, e.g.

• In the right order

run()

ping : 

PingThread

pong :

PongThread

print("ping")

run()

% java PingPong
Ready...Set...Go!
Ping!(1)
Pong!(1)
Ping!(2)
Pong!(2)
Ping!(3)
Pong!(3)
Ping!(4)
Pong!(4)
Ping!(5)
Pong!(5)
Ping!(6)
Pong!(6)
Ping!(7)
Pong!(7)
Ping!(8)
Pong!(8)
Ping!(9)
Pong!(9)
Ping!(10)
Pong!(10)
Done!

print("ping")

Java Synchronizers Address Inherent Complexities

See github.com/douglascraigschmidt/LiveLessons/tree/master/PingPongApplication

https://github.com/douglascraigschmidt/LiveLessons/tree/master/PingPongApplication


31

• Java synchronizers address inherent 
complexities of concurrency, e.g.

• Atomic ordering

• Mutual exclusion 

• Coordination 

• Ensures computations run 
properly, e.g.

• In the right order

• At the right time

See en.wikipedia.org/wiki/Real-time_computing

Java Synchronizers Address Inherent Complexities

https://en.wikipedia.org/wiki/Real-time_computing


32

• Java synchronizers address inherent 
complexities of concurrency, e.g.

• Atomic ordering

• Mutual exclusion 

• Coordination 

• Ensures computations run 
properly, e.g.

• In the right order

• At the right time

• Under the right conditions

0 Semaphore

Java Synchronizers Address Inherent Complexities

See github.com/douglascraigschmidt/LiveLessons/
tree/master/PalantiriManagerApplication

https://github.com/douglascraigschmidt/LiveLessons/tree/master/PalantiriManagerApplication


33

• Java synchronizers address inherent 
complexities of concurrency, e.g.

• Atomic ordering

• Mutual exclusion 

• Coordination 

• Ensures computations run 
properly

• Coordination is supported by
the Java concurrent & locks 
packages

• e.g., ConditionObject, 
Semaphore, etc.

Java Synchronizers Address Inherent Complexities

See docs.oracle.com/javase/8/docs/api/
java/util/concurrent/package-summary.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html


34

• Java synchronizers address inherent 
complexities of concurrency, e.g.

• Atomic ordering

• Mutual exclusion 

• Coordination 

• Ensures computations run 
properly

• Coordination is supported by
the Java concurrent & locks 
packages

• Coordination is also supported 
by Java built-in monitor objects

Java Synchronizers Address Inherent Complexities

See www.artima.com/insidejvm/ed2/threadsynch.html

Thread T1

put() take()

Thread T2

Synchronized
Queue
Java 

Monitor Object

synchronized put()
synchronized take()

<<contains>> 1 <<contains>>1

Wait Queue Entrance Queue

wait()
notify()
notifyAll()

http://www.artima.com/insidejvm/ed2/threadsynch.html


35

• Java synchronizers address inherent 
complexities of concurrency, e.g.

• Atomic ordering

• Mutual exclusion 

• Coordination

• Barrier synchronization 

• Ensures that any thread(s) 
must stop at a certain point 
& cannot proceed until all 
thread(s) reach the barrier

Java Synchronizers Address Inherent Complexities

Barrier synchronization is a variant of coordination



36

• Java synchronizers address inherent 
complexities of concurrency, e.g.

• Atomic ordering

• Mutual exclusion 

• Coordination

• Barrier synchronization 

• Ensures that any thread(s) 
must stop at a certain point 
& cannot proceed until all 
thread(s) reach the barrier

• Barrier synchronization is 
supported by the Java 
concurrent package

• e.g., CountDownLatch,
CyclicBarrier, Phaser, etc.

Java Synchronizers Address Inherent Complexities

See docs.oracle.com/javase/8/docs/api/
java/util/concurrent/package-summary.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html


37

Pervasiveness of 
Synchronizers in Java



38

Additional Frameworks & Languages

Operating System Kernel

Applications

System Libraries

Java Virtual Machine 

Threading & Synchronization Packages

• Multiple layers of synchronizers are 
provided on the Java platform

Pervasiveness of Java Synchronizer Classes



39

Additional Frameworks & Languages

Operating System Kernel

Applications

System Libraries

Java Execution Environment (e.g., JVM, ART, etc)

Threading & Synchronization Packages

• Multiple layers of synchronizers are 
provided on the Java platform, e.g.

• The Java language contains some 
features that synchronize threads

Pervasiveness of Java Synchronizer Classes

e.g., volatile variables & 
built-in monitor objects 

See en.wikipedia.org/wiki/Java_(programming_language)

https://en.wikipedia.org/wiki/Java_(programming_language)


40

Additional Frameworks & Languages

Operating System Kernel

Applications

System Libraries

Java Execution Environment (e.g., JVM, ART, etc)

Threading & Synchronization Packages

• Multiple layers of synchronizers are 
provided on the Java platform, e.g.

• The Java language contains some 
features that synchronize threads

• Other synchronizers are provided 
by the Java Class Library

Pervasiveness of Java Synchronizer Classes

e.g., Java atomics, locks, 
& other synchronizers

See en.wikipedia.org/wiki/Java_Class_Library

https://en.wikipedia.org/wiki/Java_Class_Library


41

Threading coverage Synchronization coverage

• We focus more on Java synchronization mechanisms than on Java threading 
mechanisms

Pervasiveness of Java Synchronizer Classes



42

• Synchronization complexity arises from 
coordinating the interactions of entities 
that run concurrently 

Pervasiveness of Java Synchronizer Classes



43

Pervasiveness of Java Synchronizer Classes

Java 8 parallelism frameworks may eliminate 
some of this complexity via “divide and conquer”

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

join() join()

join()

join() join() join() join()

• Synchronization complexity arises from 
coordinating the interactions of entities 
that run concurrently 



44

End of Overview of 
Java Synchronizers


