Douglas €. Schmidt
@ d.schmidt@uandernilt.edu
- www.dre.vanderhilt.edu/~schmidt

g 7 Institute for Software
Integrated Systems
Vanderhilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Lesson

« Understand the categories of capabilities provided by Java synchronizers

Atomic An action that effectively happens
operations all at once or not at all

Mutual Allows concurrent access &
exclusion updates to shared data without

race conditions

Coordination Ensures computations run I
properly, e.qg., in the right order, at
the right time, under the right
conditions, etc.

Barrier Ensures that any thread(s) must
synchronization stop at a certain point & cannot
proceed until all other thread(s) . .
reach this barrier s(u(e,méu wn,}m

PG A———

Learning Objectives in this Lesson

« Understand the categories of capabilities provided by Java synchronizers

Atomic An action that effectively happens
operations all at once or not at all

Mutual Allows concurrent access &
exclusion updates to shared mutable data

without race conditions

Coordination Ensures computations run
properly, e.qg., in the right order, at
the right time, under the right
conditions, etc.

Barrier Ensures that any thread(s) must

synchronization stop at a certain point & cannot
proceed until all other thread(s)
reach this barrier

Learning Objectives in this Lesson

« Understand the categories of capabilities provided by Java synchronizers

Atomic An action that effectively happens
operations all at once or not at all

Mutual Allows concurrent access &

exclusion updates to shared mutable data
without race conditions

Coordination Ensures computations run
properly, e.qg., in the right order, at
the right time, under the right
conditions, etc.

Barrier Ensures that any thread(s) must

synchronization stop at a certain point & cannot
proceed until all other thread(s)
reach this barrier

Learning Objectives in this Lesson

« Understand the categories of capabilities provided by Java synchronizers

Atomic An action that effectively happens
operations all at once or not at all

Mutual Allows concurrent access &
exclusion updates to shared mutable data

without race conditions

Coordination Ensures computations run
properly, e.qg., in the right order, at

the right time, under the right
conditions, etc.

Barrier Ensures that any thread(s) must

synchronization stop at a certain point & cannot
proceed until all other thread(s)
reach this barrier

Learning Objectives in this Lesson

« Understand the categories of capabilities provided by Java synchronizers

Atomic An action that effectively happens
operations all at once or not at all

Mutual Allows concurrent access &
exclusion updates to shared mutable data

without race conditions

Coordination Ensures computations run
properly, e.qg., in the right order, at
the right time, under the right
conditions, etc.

Barrier Ensures that any thread(s) must
synchronization stop at a certain point & cannot

proceed until all other thread(s)
reach this barrier

Overview of Java
Synchronizers

Overview of Java Synchronizers

» A Java synchronizer is an object use to
control the flow of cooperating threads StOp Clear
based on its state

! !
:1— Braking distance ——p :
i |

Signal box B

Distant signal Home signal Starting signal

- - Signal box C
_ [1 I i —>
Signal box A N : : 1 |
L - Levell crolssin - H
Starting signal g Home signal Distant signal

See en.wikipedia.org/wiki/Synchronization (computer science)

https://en.wikipedia.org/wiki/Synchronization_(computer_science)

Overview of Java Synchronizers

« Java synchronizers ensure interactions between threads obey certain
properties

Overview of Java Synchronizers

 Java synchronizers ensure interactions between threads obey certain
properties, e.g. PR

« Don't corrupt shared
mutable data

10

Overview of Java Synchronizers

« Java synchronizers ensure interactions between threads obey certain

properties, e.g. _
, class AtomicOps ({

mutable data B

void increment () {
// Thread T,
for (;;) mCounter++;

}

Running increment() &
decrement() concurrently
yields undefined behavior
since mCounter is shared

mutable data

void decrement () {
// Thread T,
for (;;) mCounter--;

}

11

Overview of Java Synchronizers

« Java synchronizers ensure interactions between threads obey certain

properties, e.g. _
, class AtomicOps ({

mutable data -

synchronized void increment() {
// Thread T,
for (;;) mCounter++;

}

synchronized void decrement() {
// Thread T,
for (;;) mCounter--;

}

}

Running increment() & decrement() concurrently yields correct
behavior since mCounter is synchronized shared mutable data

12

Overview of Java Synchronizers

 Java synchronizers ensure interactions between threads obey certain
properties, e.g.

« Don't corrupt shared
mutable data

 Occur in the right order, at
the right time, & under the
right conditions

13

Overview of Java Synchronizers

« Java synchronizers ensure interactions between threads obey certain
propertles, €.g. % java PingPongWrong
Ready...Set...Go!
The unsynchronized pﬁ%g{l) .
version Is buggy Ping!(2)
- Occur in the right order, at E:L‘g:gg
the right time, & under the Ping!(5)
right conditions Ping!(6)
_ . Ping!(7)
pong . _.< Ping!(8)
Thread Ping!(9)

ping : < | Ping!(10)

Pong!(1)
Thread run() Pong!(2)
i Pong!(3)

Pong!(4)
un(print("pong") | kRS

Pong!(6)
N o
! Pong!(9)

Pong!(10)
| Done!

14

Overview of Java Synchronizers

« Java synchronizers ensure interactions between threads obey certain
propertles, €.g. % java PlayPingPong
The Synchfon/'zed Ready...Set...Go!

. . Ping!(1)
version coordinates Pong!(1)

« Occur in the right order, at B UIEEEE Sy Eg”r?;,((zz))
the right time, & under the Ping!(3)
right conditions PO,
_ . Ping!(4)

pong . _< Pong!(4)
Thread Ping!(5)
T , . Pong!(5
PINg - < ! P?nngg!((6))
Thread run() Pong!(6)
| Ping!(7)

' Pong!(7)
un(print("pong") | EEEE)

Pong!(8)
: et " Plng|(9)
Q print("ping") i !
!; Ping!(10)
"4

Pong!(10)
Done!

15

Java Synchronizers Address
Inherent Complexities

16

Java Synchronizers Address Inherent Complexities

 Java synchronizers address inherent
complexities of concurrency

Inherent complexities are the “rocket science” of software development

Java Synchronizers Address Inherent Complexities

 Java synchronizers address inherent
complexities of concurrency, e.g.

« Atomic ordering

» Ensures an action happens all
at once or not at all

See en.wikipedia.org/wiki/Linearizability

https://en.wikipedia.org/wiki/Linearizability

Java Synchronizers Address Inherent Complexities

 Java synchronizers address inherent Long
complexities of concurrency, e.g. L R S field
« Atomic ordering initialized 0
“E’ read field — 0
“1 increase
: : . : 0
» Operations on a field in thread, field by 1
occur all at once wrt operations write back — 1
on the field in thread, ,, v read field « 1
increase 1
field by 1

write back — 2

Atomicity does not occur on primitive Java
data types without using synchronizers

See docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

Java Synchronizers Address Inherent Complexities

 Java synchronizers address inherent
complexities of concurrency, e.g.

« Atomic ordering

« Atomic ordering is supported by
the Java atomic package

Package java.util.concurrent.atomic

A small toolkit of classes that support lock-free thread-safe programming on single variables.

See: Description

Class Summary
Class

AtomicBoolean
Atomiclnteger

AtomiclintegerArray

AtomiclintegerFieldUpdater<T>

AtomicLong

AtomicLongArray

AtomicLongFieldUpdater<T>

AtomicMarkableReference<V>

AtomicReference<V>

AtomicReferenceArray<E>

AtomicReferenceFieldUpdater<T,V>

AtomicStampedReference<V>

Description
A boolean value that may be updated atomically.
An int value that may be updated atomically.

An int array in which elements may be updated
atomically.

A reflection-based utility that enables atomic updates
to designated volatile int fields of designated
classes.

A long value that may be updated atomically.

A long array in which elements may be updated
atomically.

A reflection-based utility that enables atomic updates
to designated volatile long fields of designated
classes.

An AtomicMarkableReference maintains an object
reference along with a mark bit, that can be updated
atomically.

An object reference that may be updated atomically.

An array of object references in which elements may
be updated atomically.

A reflection-based utility that enables atomic updates
to designated volatile reference fields of designated
classes.

An AtomicStampedReference maintains an object
reference along with an integer "stamp", that can be
updated atomically.

See docs.oracle.com/javase/8/docs/api/java/

util/concurrent/atomic/package-summary.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html

Java Synchronizers Address Inherent Complexities

 Java synchronizers address inherent
complexities of concurrency, e.g.

« Atomic ordering

Main Memory

« Atomic ordering is also supported Thread, Thread,
by the Java volatile type qualifier % s

The volatile type qualifier ensures a variable is read
from & written to main memory & not cached

See en.wikipedia.org/wiki/Volatile variable#In Java

http://en.wikipedia.org/wiki/Volatile_variable#In_Java

Java Synchronizers Address Inherent Complexities

 Java synchronizers address inherent
complexities of concurrency, e.g.

- Atomic ordering
 Mutual exclusion

e Prevents simultaneous access
to a shared resource in a
critical section

See en.wikipedia.org/wiki/Mutual exclusion

https://en.wikipedia.org/wiki/Mutual_exclusion

Java Synchronizers Address Inherent Complexities

 Java synchronizers address inherent
complexities of concurrency, e.qg. Thread,
 Mutual exclusion —>
* Prevents simultaneous access
to a shared resource in a

critical section

Thread,

5

Race conditions occur when a program
depends on the sequence or timing
of threads for it to operate properly

Shared State

See en.wikipedia.org/wiki/
Race condition#Software

https://en.wikipedia.org/wiki/Race_condition#Software

Java Synchronizers Address Inherent Complexities

» Java synchronizers address inherent Long
complexities of concurrency, e.g. Ulnicaey - Uhisse, field
initialized 0
 Mutual exclusion GE) read field — 0
=1 increase 0
field by 1
write back read field (1)?or
« Read/write conflicts \ 4 2

« If one thread reads while another
thread writes concurrently, the field
that’s read may be inconsistent

Two operations confiict
if at least one is a write

Java Synchronizers Address Inherent Complexities

 Java synchronizers address inherent
complexities of concurrency, e.g.

 Mutual exclusion

« Write/write conflicts

time

« If two threads try to write to same
field concurrently, the result may

be inconsistent

Thread,
initialized
read field

increase
field by 2

write back

Thread,
read field <«
InCcrease
field by 1

write back —

Long
field

0
0
0
0

1 or
27

25

Java Synchronizers Address Inherent Complexities

« Java synchronizers address inherent “Main Memory
complexities of concurrency, e.g. . n
?
nv '

« Mutual exclusion

Cache 1 Cache 2 Cache n

« Write/write conflicts

Thread, Thread,

% X

These problems often occur in multi-core processors with "weak” memory
ordering due to core caches that allow “out-of-order” load & store operations

See en.wikipedia.org/wiki/Memory ordering

https://en.wikipedia.org/wiki/Memory_ordering

Java Synchronizers Address Inherent Complexities

° Java SynChr0n|Zers address Inherent Package java.util.concurrent.locks

Interfaces and classes providing a framework for locking and waiting for conditions that is

Com p I eXitieS Of Con Cu rrency’ e] g] distinct from built-in synchronization and monitors.

See: Description

Interface Summary

° M utua I eXCI uSion Interface Description

Condition Condition factors out the Object monitor methods (wait, notify
and notifyAll) into distinct objects to give the effect of having
multiple wait-sets per object, by combining them with the use of
arbitrary Lock implementations.

Lock Lock implementations provide more extensive locking operations

than can be obtained using synchronized methods and statements.

ReadWriteLock A ReadWriteLock maintains a pair of associated locks, one for read-
only operations and one for writing.

Class Summary
Class Description

AbstractOwnableSynchronizer A synchronizer that may be exclusively owned by a

« Mutual exclusion is supported

AbstractQueuedLongSynchronizer A yersion of AbstractQueuedSynchronizer in which

by the Java IOCkS paCkage synchronization state is maintained as a long.

AbstractQueuedSynchronizer Provides a framework for implementing blocking locks

 e.g., ReentrantLock, Reentrant Mt rely on Brstin eet ot (FIFO) wat quenen.
i LockSupport Basic thread blocking primitives for creating locks and
ReadWriteLock, StampedLock,

other synchronization classes.

etc . ReentrantLock A reentrant mutual exclusion Lock with the same
basic behavior and semantics as the implicit monitor
lock accessed using synchronized methods and
statements, but with extended capabilities.

ReentrantReadWriteLock An implementation of ReadWriteLock supporting
similar semantics to ReentrantLock.

See docs.oracle.com/javase/8/docs/api/java/
util/concurrent/locks/package-summary.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/package-summary.html

Java Synchronizers Address Inherent Complexities

 Java synchronizers address inherent
complexities of concurrency, e.g.

Thread T, —>§ Thread T, —>§
« Mutual exclusion | ,
I
: Java |
i 3 I
: put() Monitor Object take() |

— — > |synchronized put() & ——-
synchronized take()

¢

<<contains>>|1

1| <<contains>>

Wait Queue

« Mutual exclusion is also supported \évgtiitf(g()

by the synchronized keyword notifyAll()

in Java built-in monitor objects

See www.artima.com/insidejvm/ed2/threadsynch.html

http://www.artima.com/insidejvm/ed2/threadsynch.html

Java Synchronizers Address Inherent CompIeX|t|es

 Java synchronizers address inherent
complexities of concurrency, e.g.

- Atomic ordering
« Mutual exclusion
 Coordination

» Ensures computations run
properly

29

Java Synchronizers Address Inherent Complexities

 Java synchronizers address inherent

. ona : y % java PingPong
complexities of concurrency, e.g. Ponpgﬂ?read» Ready...Set...Go)
|

Ping!(1)
! Pong!(1)
run() Ping!(2)
« Coordination E?nrg'(%)

« Ensures computations run E?JE'(%)
properly, €.g. Pong!(4)

| .
 In the right order ' print("ping") E:)nr%%

Ping!(6)
ping : 9? Pong!(6)

Ping!(7)
Pong!(7)
Ping!(8)

Pong!(8)
run() Ping!(9)

Pong!(9)
Ping!(10)
Pong!(10)
Done!

| print("ping")

PingThread
I

See github.com/douglascraigschmidt/Livel essons/tree/master/PingPongApplication

https://github.com/douglascraigschmidt/LiveLessons/tree/master/PingPongApplication

Java Synchronizers Address Inherent Complexities
 Java synchronizers address inherent
complexities of concurrency, e.qg. 0 o 0

 Coordination

« Ensures computations run
properly, e.qg.

At the right time

See en.wikipedia.org/wiki/Real-time computing

https://en.wikipedia.org/wiki/Real-time_computing

Java Synchronizers Address Inherent Complexities

 Java synchronizers address inherent
complexities of concurrency, e.g.

 Coordination

« Ensures computations run
properly, e.qg.

 Under the right conditions

See github.com/douglascraigschmidt/LiveLessons/
tree/master/PalantiriManagerApplication

https://github.com/douglascraigschmidt/LiveLessons/tree/master/PalantiriManagerApplication

Java Synchronizers Address Inherent Complexities

¢ Java SynCh rOnizeI‘S add ress inherent Package java.util.concurrent
Com pIeXities Of Concu rrency’ e . g] Utility classes commonly useful in concurrent programming.

See: Description

Interface Summary

Interface Description

BlockingDeque<E> A Deque that additionally supports

H H blocking operations that wait for the
¢ Coo rd I natlon deque to become non-empty when
retrieving an element, and wait for
space to become available in the deque
when storing an element.

BlockingQueue<E> A Queue that additionally supports

operations that wait for the queue to
become non-empty when retrieving an

° COO rd i nation is Su ppo rted by element, and wait for space to become

available in the queue when storing an

the Java concurrent & locks

Callable<V> A task that returns a result and may

pa C ka g es throw an exception.

CompletableFuture.AsynchronousCompletionTask A marker interface identifying

HF - asynchronous tasks produced by async
¢ e-g-, CondltlonObJeCt, methods.
Sem a p hore, etc . CompletionService<v> A service that decouples the production

of new asynchronous tasks from the
consumption of the results of completed
tasks.

CompletionStage<T> A stage of a possibly asynchronous

computation, that performs an action or
computes a value when another
CompletionStage completes.

ConcurrentMap<K,V> A Map providing thread safety and

atomicity guarantees.

See docs.oracle.com/javase/8/docs/api/
java/util/concurrent/package-summary.htmi

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html

Java Synchronizers Address Inherent Complexities

 Java synchronizers address inherent
complexities of concurrency, e.g.

Thread T,

.

Thread T, —>§

|
« Coordination :
|

Java

Monitor Object

— — — >, [synchronized put() & ——-

synchronized take()

« Coordination is also supported

¢

1| <<contains>>

Entrance Queue

by Java built-in monitor objects

See www.artima.com/insidejvm/ed2/threadsynch.html

http://www.artima.com/insidejvm/ed2/threadsynch.html

Java Synchromzers Address Inherent CompIeX|t|es

complexities of concurrency, e.g.

“J’”

-13‘6-

« Barrier synchronization

» Ensures that any thread(s)
must stop at a certain point
& cannot proceed until all
thread(s) reach the barrier

Barrier synchronization is a variant of coordination

Java Synchronizers Address Inherent Complexities

¢ Java SynCh rOnizeI‘S add ress inherent Package java.util.concurrent
Com pIeXities Of Concu rrency’ e] g] Utility classes commonly useful in concurrent programming.

See: Description

Interface Summary

Interface Description

BlockingDeque<E> A Deque that additionally supports

blocking operations that wait for the
deque to become non-empty when
retrieving an element, and wait for

H H H space to become available in the deque
¢ Ba rrler SynCh ron Izatlon V\Ehen storing an element. ’
BlockingQueue<E> A Queue that additionally supports
operations that wait for the queue to
become non-empty when retrieving an
element, and wait for space to become
available in the queue when storing an
element.

Callable<V> A task that returns a result and may

throw an exception.

CompletableFuture.AsynchronousCompletionTask A marker interface identifying

° Ba rrier SynChronizatiOn is f;gi;;cig:nous tasks produced by async
Su ppo rted by the Java CompletionService<v> A service that decouples the production

of new asynchronous tasks from the

Concu rrent package ;:;)Snkssu.mptiou of the results of completed

CompletionStage<T> A stage of a possibly asynchronous

° e . g . Cou ntDown LatCh , computation, that performs an action or

computes a value when another

Cycl iCBa rrier, Phaser, etc. CompletionStage completes.

ConcurrentMap<K,vV> A Map providing thread safety and
atomicity guarantees.

See docs.oracle.com/javase/8/docs/api/
java/util/concurrent/package-summary.htmi

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html

Pervasiveness of
Synchronizers in Java

37

Pervasiveness of Java Synchronizer Classes

- Multiple layers of synchronizers are
provided on the Java platform |

Applications

Additional Frameworks & Languages

Threading & Synchronization Packages

Java Virtual Machine

System Libraries

Operating System Kernel

@ = = 9

38

Pervasiveness of Java Synchronizer Classes

 Multiple layers of synchronizers are
provided on the Java platform, e.q.

features that synchronize threads

‘ Threading & Synchronization Packages

Applications

e.g., volatile variables &

built-in monitor Ob-] ects Java Execution Environment (e.g., JVM, ART, etc)

System Libraries

(Operating System Kernel

Java

See en.wikipedia.org/wiki/Java (programming language)

https://en.wikipedia.org/wiki/Java_(programming_language)

Pervasiveness of Java Synchronizer Classes

 Multiple layers of synchronizers are
provided on the Java platform, e.q.

Applications

Additional Frameworks & Languages

o Other synchronizers are provided Threading & Synchronization Packages
by the Java Class Library

Java Execution Environment (e.g., JVM, ART, etc)

e.g., Java atomics, locks,

& other synchronizers System Libraries

Operating System Kernel

Java Language Java Language
java javac javadoc jar javap JPDA
oot JConsole JavaVisualVM JavaDB Security Intl RMI
DL Deploy Monitoring Troubleshoot Scripting JVMTI Web Services

lang and util Coll Utilities JAR
Base Libraries Logging M APl Ref Objects
Reflection Regular E; Zip Instrumentation
Java Virtual Machine Java HotSpot Client and Server VM

See en.wikipedia.org/wiki/Java Class Library

https://en.wikipedia.org/wiki/Java_Class_Library

Pervasiveness of Java Synchronizer Classes

« We focus more on Java synchronization mechanisms than on Java threading
mechanisms

Threading coverage Synchronization coverage

41

Pervasiveness of Java Synchronizer Classes

 Synchronization complexity arises from v s
coordinating the interactions of entities §
that run concurrently

42

Pervasiveness of Java Synchronizer Classes

 Synchronization complexity arises from DataSource
coordinating the interactions of entities |
fork
that run concurrently DataSource, 0 DataSource,

I I
fork() fork()

DataSource, DataSource, , DataSource, 4 DataSource, ,

Process Process Process Process
sequentially sequentially sequentially sequentially

Java 8 parallelism frameworks may eliminate
some of this complexity via “divide and conquer”

End of Overview of
Java Synchronizers

44

