
Overview of Java Threads

(Part 3)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand how Java threads support concurrency

• Learn how our case study app works

• Know alternative ways of giving code to a thread

• Learn how to pass parameters to
a Java thread

• Know how to run a Java thread

• Recognize common thread
mechanisms

• Appreciate Java thread “happens-
before” orderings

• Understand the implementation
of the GCD concurrent app

Learning Objectives in this Part of the Lesson

3

• Understand how Java threads support concurrency

• Learn how our case study app works

• Know alternative ways of giving code to a thread

• Learn how to pass parameters to
a Java thread

• Know how to run a Java thread

• Recognize common thread
mechanisms

• Appreciate Java thread “happens-
before” orderings

• Understand the implementation
of the GCD concurrent app

• Know the pros & cons of Java
thread programming models

Learning Objectives in this Part of the Lesson

4

Runtime Behavior of the
GCD Concurrent App

5

Runtime Behavior of the GCD Concurrent App
• Concurrently compute the greatest common divisor (GCD)

of two #’s, which is the largest integer that divides two
integers without a remainder

See en.wikipedia.org/wiki/Greatest_common_divisor

https://en.wikipedia.org/wiki/Greatest_common_divisor

6

Implementation of the
GCD Concurrent App

7

Implementation of the GCD Concurrent App

See github.com/douglascraigschmidt/POSA/tree/master/ex/M3/GCD/Concurrent

• This app shows various Java Thread methods & alternative implementations

https://github.com/douglascraigschmidt/POSA/tree/master/ex/M3/GCD/Concurrent

8

Implementation of the GCD Concurrent App
• This app shows various Java Thread methods & alternative implementations

Super class that logs various activity lifecycle hook methods to aid debugging

9

Implementation of the GCD Concurrent App
• This app shows various Java Thread methods & alternative implementations

Main entry point into the app that handles button presses from the user

10

Implementation of the GCD Concurrent App
• This app shows various Java Thread methods & alternative implementations

Computes the GCD of two numbers by extending the Thread super class

11

Implementation of the GCD Concurrent App
• This app shows various Java Thread methods & alternative implementations

Computes the GCD of two numbers by implementing the Runnable interface

12

Implementation of the GCD Concurrent App

See github.com/douglascraigschmidt/POSA/tree/master/ex/M3/GCD/Concurrent

• This app shows various Java Thread methods & alternative implementations

https://github.com/douglascraigschmidt/POSA/tree/master/ex/M3/GCD/Concurrent

13

Pros & Cons of Java Thread
Programming Models

14

Pros & Cons of Java Thread Programming Models
• Now that we’ve examined the source code for the GCD concurrent app we’ll

summarize the pros & cons of the various Java thread programming models

15

Pros & Cons of Java Thread Programming Models
• Pros with extending Thread public class GCDThread

extends Thread {

...

private MainActivity mActivity;

public GCDThread setActivity

(MainActivity activity) {

mActivity = activity;

return this;

}

private int computeGCD

(int number1, number2) {

...

}

public void run()

{ ... }

...

}

16

Pros & Cons of Java Thread Programming Models
• Pros with extending Thread

• It’s straightforward to extend
the Thread super class

public class GCDThread

extends Thread {

...

private MainActivity mActivity;

public GCDThread setActivity

(MainActivity activity) {

mActivity = activity;

return this;

}

private int computeGCD

(int number1, number2) {

...

}

public void run()

{ ... }

...

}

17

Pros & Cons of Java Thread Programming Models
• Pros with extending Thread

• It’s straightforward to extend
the Thread super class

• Just override the run() hook
method!

public class GCDThread

extends Thread {

...

private MainActivity mActivity;

public GCDThread setActivity

(MainActivity activity) {

mActivity = activity;

return this;

}

private int computeGCD

(int number1, number2) {

...

}

public void run()

{ ... }

...

}

18

Pros & Cons of Java Thread Programming Models
• Pros with extending Thread

• It’s straightforward to extend
the Thread super class

• It also consolidates all state
& methods in one place

public class GCDThread

extends Thread {

...

private MainActivity mActivity;

public GCDThread setActivity

(MainActivity activity) {

mActivity = activity;

return this;

}

...

// Main app

Thread thread = new GCDThread()

.setActivity(this)...;

thread.start();

...

19

Pros & Cons of Java Thread Programming Models
• Pros with extending Thread

• It’s straightforward to extend
the Thread super class

• It also consolidates all state
& methods in one place

• Enables central allocation &
management of the thread

public class GCDThread

extends Thread {

...

private MainActivity mActivity;

public GCDThread setActivity

(MainActivity activity) {

mActivity = activity;

return this;

}

...

// Main app

Thread thread = new GCDThread()

.setActivity(this)...;

thread.start();

...

20

Pros & Cons of Java Thread Programming Models
• Pros with extending Thread

• It’s straightforward to extend
the Thread super class

• It also consolidates all state
& methods in one place

• Enables central allocation &
management of the thread

• This design is useful when the
thread must be updated during
runtime configuration changes

public class GCDThread

extends Thread {

...

private MainActivity mActivity;

public GCDThread setActivity

(MainActivity activity) {

mActivity = activity;

return this;

}

...

// Main app

Thread thread = new GCDThread()

.setActivity(this)...;

thread.start();

...

21

Pros & Cons of Java Thread Programming Models
• Pros with extending Thread

• It’s straightforward to extend
the Thread super class

• It also consolidates all state
& methods in one place

• Enables central allocation &
management of the thread

• This design is useful when the
thread must be updated during
runtime configuration changes

• e.g., interrupting/restarting
a running thread & reading/
writing its state

public class GCDThread

extends Thread {

...

private MainActivity mActivity;

public GCDThread setActivity

(MainActivity activity) {

mActivity = activity;

return this;

}

...

// Main app

Thread thread = new GCDThread()

.setActivity(this)...;

thread.start();

...

See the upcoming lessons on “Managing the Java
Lifecycle” & “Managing Multi-threaded Activity State”

22

Pros & Cons of Java Thread Programming Models
• Cons with extending Thread public class GCDThread

extends Thread {

...

private int computeGCD

(int number1, number2) {

...

}

public void run() {

...

}

...

}

23

Pros & Cons of Java Thread Programming Models
• Cons with extending Thread

• A subclass must extend the
Thread superclass

public class GCDThread

extends Thread {

...

private int computeGCD

(int number1, number2) {

...

}

public void run() {

...

}

...

}

24

Pros & Cons of Java Thread Programming Models
• Cons with extending Thread

• A subclass must extend the
Thread superclass

• This is restrictive since Java
only allows one superclass
per subclass!

public class GCDThread

extends Thread {

...

private int computeGCD

(int number1, number2) {

...

}

public void run() {

...

}

...

}

See docs.oracle.com/javase/tutorial/java/IandI/subclasses.html

https://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html

25

Pros & Cons of Java Thread Programming Models
• Pros of implementing Runnable public class GCDRunnable

implements Runnable,

implements Serializable,

extends Random {

...

private int computeGCD

(int number1, number2) {

...

}

public void run() {

...

}

...

26

Pros & Cons of Java Thread Programming Models
• Pros of implementing Runnable

• A subclass can implement multiple
interfaces

See docs.oracle.com/javase/tutorial/java/concepts/interface.html

public class GCDRunnable

implements Runnable,

implements Serializable,

extends Random {

...

private int computeGCD

(int number1, number2) {

...

}

public void run() {

...

}

...

https://docs.oracle.com/javase/tutorial/java/concepts/interface.html

27

Pros & Cons of Java Thread Programming Models
• Pros of implementing Runnable

• A subclass can implement multiple
interfaces

• Which enables it to extend
a different superclass

See docs.oracle.com/javase/tutorial/java/concepts/interface.html

public class GCDRunnable

implements Runnable,

implements Serializable,

extends Random {

...

private int computeGCD

(int number1, number2) {

...

}

public void run() {

...

}

...

https://docs.oracle.com/javase/tutorial/java/concepts/interface.html

28

Pros & Cons of Java Thread Programming Models
• Pros of implementing Runnable

• A subclass can implement multiple
interfaces

• Runnables are flexible since they
can be reused in other contexts

See upcoming lesson on “the Java Executor framework”

public class GCDRunnable

implements Runnable,

... {

...

}

...

GCDRunnable runnableCommand =

new GCDRunnable(...);

ExecutorService executor =

Executors.newFixedThreadPool

(POOL_SIZE);

...

executor.execute

(runnableCommand);

29

Pros & Cons of Java Thread Programming Models
• Cons of implementing Runnable public class GCDRunnable

implements Runnable,

... {

...

}

...

GCDRunnable runnableCommand =

new GCDRunnable(...);

Thread thr =

new Thread(runnableCommand);

...

thr.start();

30

Pros & Cons of Java Thread Programming Models
• Cons of implementing Runnable

• Yields more “moving parts”

public class GCDRunnable

implements Runnable,

... {

...

}

...

GCDRunnable runnableCommand =

new GCDRunnable(...);

Thread thr =

new Thread(runnableCommand);

...

thr.start();

31

Pros & Cons of Java Thread Programming Models
• Cons of implementing Runnable

• Yields more “moving parts”

• e.g., Runnable & Thread are
separate entities & must be
managed/accessed separately

This decoupling get complicated if a program needs to access the
state of a runnable, but only holds a reference to the thread object..

public class GCDRunnable

implements Runnable,

... {

...

}

...

GCDRunnable runnableCommand =

new GCDRunnable(...);

Thread thr =

new Thread(runnableCommand);

...

thr.start();

32

Pros & Cons of Java Thread Programming Models
• In practice, Java & Android software often implements Runnable rather than

extending Thread

Thread

Thread(Runnable)

start()

…

Runnable

run()

MyRunnable

run()

…

Thread

run()

start()

…

MyThread

run()

…

33

Pros & Cons of Java Thread Programming Models
• In practice, Java & Android software often implements Runnable rather than

extending Thread

• Lambda expressions are becoming
popular with Java 8-based platforms

See www.drdobbs.com/jvm/lambda-expressions-in-java-8/240166764

http://www.drdobbs.com/jvm/lambda-expressions-in-java-8/240166764

34

End of Overview of
Java Threads (Part 3)

