Overview of Java Threads
(Part 3)

Douglas C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

T ta 10:42

RUN RUN RUN THREAD
RUNNABLE THREAD RUNNABLE

Entering run() with thread id Thread|[Thread-2,5,main|
In run() with thread id Thread[Thread-2,5,main] the GGD of
and 90 907 is 1
d id Thread|Tl
hread[Thread-2
23125 1
n() with thread id ead|Thread-3,5,main| the GCD of
1724048167 and 945
[lIn run() with thread id sad[Thread-2,5,main] the
gl a 10:46 1406428969 and -1563988273 is -1
h thread id Thread[Thread-2,5main] the GCD of
RUN RUN RUN THREAD 115029762 and -1618222233 is -3
RUNNABLE THREAD RUNNABLE In run() with thread id T Thread-3,5main] the GCD of
1838910339 and 33 i
() with thread
175 and -11
In run() with thread id ¢
966125466 and 1005383528 is 2
(h thread id Thread[Thread-2,5,main] the GCD of
-1

In run() with thread id

1623111466 and -1298544474 is -2

« Understand the implementation
of the GCD concurrent app

Learning Objectives in this Part of the Lesson

« Know the pros & cons of Java
thread programming models

Runtime Behavior of the
GCD Concurrent App

Runtime Behavior of the GCD Concurrent App

« Concurrently compute the greatest common divisor (GCD)

of two #'s, which is the largest integer that divides two
integers without a remainder

RUN RUN RUN THREAD
RUNNABLE THREAD RUNNABLE

n() with thread id Thread[Thread-2,5,main

Yl w 10:46

RUN RUN RUN THREAD 3,5,main] the GCD

RUNNABLE THREAD RUNNABLE .
ad([Thread-3,5,main] the GCD o

sad-2,5,main] the GC

<< Java Class>=

(9 Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

See en.wikipedia.org/wiki/Greatest common_divisor

https://en.wikipedia.org/wiki/Greatest_common_divisor

Implementation of the
GCD Concurrent App

Implementation of the GCD Concurrent App

 This app shows various Java Thread methods & alternative implementations

z<Java Clasg==

(® MainActivity

_ =<<Java Clas_5:=-:=- N & MainActivity()
@ LifecycleLoggingActivity < onCreate(Bundle)-void
@ LifecycleLoggingActivity() @ runRunnable(View)void
< onCreate(Bundle)void &’/””/’4 @ runThread(View)void
< onStart()-void @ runThreadAndRunnable(View)void
< onResume()void @ println{String)-void
< onPause()void
o DﬂStDpI:}:'u‘Dilj -mActivity” 0.1 -rnAn:tivity A

< onRestart():void
< onDestroy()-void

=<<Java Class=>
(®GCDThread
=<Java Class>>
(® GCDRunnable & GCDThread()
r: . — @ setRandom{Random):GCDThread
GCDRunnable(MainActivity) o setActivity(MainActivity): GCDThread
= I:nmput_eGCD[mt,mt}:lnt = computeGCD(int, int):int
@ run()-void @ run()-void

See github.com/douglascraigschmidt/POSA/tree/master/ex/M3/GCD/Concurrent

https://github.com/douglascraigschmidt/POSA/tree/master/ex/M3/GCD/Concurrent

Implementation of the GCD Concurrent App

 This app shows various Java Thread methods & alternative implementations

=<Java Class>>
(® MainActivity
_ =<<Java Clas_5:=-:=- N & MainActivity()
@ LifecycleLoggingActivity < onCreate(Bundle)-void
@ LifecycleLoggingActivity() @ runRunnable(View)void
< onCreate(Bundle)void @ runThread(View)void
< onStart()-void @ runThreadAndRunnable(View)void
< onResume()void @ println{String)-void
< onPause()void
o DﬂStDpI:}:'u‘Dilj -mActivit 0.1 -rnAn:tivity A
< onRestart():void
< onDestroy()-void
=<<Java Class=>
(®GCDThread
=<Java Class>>
(3 GCDRunnable & GCDThread()
. — @ setRandom{Random):GCDThread

& GCDRunnable(MainActivity) o setActivity(MainActivity)- GCDThread

= I:nmput_eGCD[mt,mt}:mt = computeGCD(int, int):int

@ run()-void o run{)-void

Super class that logs various activity lifecycle hook methods to aid debugging

Implementation of the GCD Concurrent App

 This app shows various Java Thread methods & alternative implementations

z<Java Clasg==

(® MainActivity

<<Java Clasg=> & MainActivity()
@ LifecycleLoggingActivity < onCreate(Bundle)-void
@ LifecycleLoggingActivity() @ runRunnable(View)void
< onCreate(Bundle)void A @ runThread(View)void
< onStart()-void @ runThreadAndRunnable(View)void
< onResume()void @ println{String)-void
< onPause()void

< onStop():-void -mActivity” 0.1 -mActivity .1

< onRestart():void
< onDestroy()-void

=<<Java Class=>
(®GCDThread
=<Java Class>>
(® GCDRunnable & GCDThread()
r: . — @ setRandom{Random):GCDThread
GCDRunnable(MainActivity) o setActivity(MainActivity): GCDThread
= I:nmput_eGCD[mt,mt}:lnt = computeGCD(int, int):int
@ run()-void @ run()-void

Main entry point into the app that handles button presses from the user

Implementation of the GCD Concurrent App

 This app shows various Java Thread methods & alternative implementations

z<Java Clasg==

(® MainActivity
_ =<<Java Clas_5:=-:=- N & MainActivity()
@ LifecycleLoggingActivity < onCreate(Bundle)-void
@ LifecycleLoggingActivity() @ runRunnable(View)void
< onCreate(Bundle)void &’/””/’4 @ runThread(View)void
< onStart()-void @ runThreadAndRunnable(View)void
< onResume()void @ println{String)-void
< onPause()void '
vDﬂStDpI:}:'u‘Dilj -mActivity” 0.1 -rnAn:tivity 0.1

< onRestart():void
< onDestroy()-void

=< Java Class==

(®GCDThread
=<Java Class>>
(® GCDRunnable & GCDThread()
r: . — @ setRandom{Random):GCDThread
GCDRunnable(MainActivity) o setActivity(MainActivity): GCDThread
@ computeGLD(int, int)-int = computeGCD(int, int):int
@ run()-void

@ run()-void

Computes the GCD of two numbers by extending the Thread super class

Implementation of the GCD Concurrent App

 This app shows various Java Thread methods & alternative implementations

z<Java Clasg==

(® MainActivity

_ =<<Java Clas_5:=-:=- N & MainActivity()
@ LifecycleLoggingActivity < onCreate(Bundle)-void
@ LifecycleLoggingActivity() @ runRunnable(View)void
< onCreate(Bundle)void &’/””/’4 @ runThread(View)void
< onStart()-void @ runThreadAndRunnable(View)void
< onResume()void @ println{String)-void
< onPause()void '
o DﬂStDpI:}:'u‘Dilj -mActivity” 0.1 -rnAn:tivity A

< onRestart():void
< onDestroy()-void

=< Java Class==

(®GCDThread
=<Java Class=>
(® GCDRunnable & GCDThread()
r: . — @ setRandom{Random):GCDThread
GCDRunnable(MainActivity) o setActivity(MainActivity): GCDThread

B computeGCD(int,int):int
@ run()-void

= computeGCD(int, int):int
@ run()-void

Computes the GCD of two numbers by implementing the Runnable interface

Implementation of the GCD Concurrent App

 This app shows various Java Thread methods & alternative implementations

/!t
* Computes the greatest common divisor (GCD) of two numbers, which is
* the largest positive integer that divides two integers without a
* remainder. This implementation extends Random and implements the
* Runnable interface's run() hook method.
*/
public class GCDRunnable
extends Random // Inherits random number generation capabilities.
implements Runnable {
/'ﬁ
* A reference to the MainActivity.
*/
private final MainActivity mActivity;

/Qt
* Number of times to iterate, which is 100 million to ensure the
* program runs for a while.
*/

private final int MAX ITERATIONS = 100000000 ;

/'Q
* Number of times to iterate before calling print, which is 10
* million to ensure the program runs for a while.
*/

private final int MAX PRINT_ ITERATIONS = 10000000;

/ﬁﬁ
* Hook method that runs for MAX ITERATIONs computing the GCD of
* randomly generated numbers.
*/
public void run() {
final String threadString = " with thread id " + Thread.currentThread() ;

mActivity.println("Entering run()" + threadString);
// Generate random numbers and compute their GCDs.

for (int i = 0; i < MAX ITERATIONS; ++i) {
// Generate two random numbers.
int numberl = nextInt();
int number2 = nextInt();

// Print results every 10 million iterations.
if ((i % MAX_PRINT_ITERATIONS) == 0)
mActivity.println("In run()"
+ threadString

+ " the GCD of "

+ numberl

+ % and "

+ number2

=" iy »

+ computeGCD (numberl,
number2)) ;

}

mActivity.println("Leaving run() " + threadString):;

* Computes the greatest common divisor (GCD) of two numbers, which is
* the largest positive integer that divides two integers without a
* remainder. This implementation extends Thread and overrides its
* run() hook method.
*/
public class GCDThread
extends Thread {(

/ﬁ'

* A reference to the MainActivity.

*/
private MainActivity mActivity;

/ﬁt
* Generate random numbers.
*/

private Random mRandom;

/ﬁt

* Number of times to iterate, which is 100 million to ensure the
* program runs for a while.
*/

private final int MAX_ITERATIONS = 100000000;

/ﬁ'

* Number of times to iterate before calling print, which is 10
* million to ensure the program runs for a while.
*/

private final int MAX_ PRINT_ ITERATIONS = 10000000;

/ﬁt
* Hook method that runs for MAX ITERATIONs computing the GCD of
* randomly generated numbers.
*/
public void run() {(fj
final String threadString = " with thread id " + Thread.currentThread() ;

mActivity.println("Entering run()" + threadString);
// Generate random numbers and compute their GCDs.

for (int i = 0; i < MAX ITERATIONS; ++i) {
// Generate two random numbers.
int numberl = mRandom.nextInt() ;
int number2 = mRandom.nextInt();

// Print results every 10 million iterations.
if ((1 % MAX_PRINT_ITERATIONS) == 0)
mActivity.println("In run()"
+ threadString + " the GCD of "
+ numberl + " and " + number2 + " is "
+ computeGCD (numberl,
number?)) ;
}

mActivity.println("Leaving run() " + threadString);

See github.com/douglascraigschmidt/POSA/tree/master/ex/M3/GCD/Concurrent

https://github.com/douglascraigschmidt/POSA/tree/master/ex/M3/GCD/Concurrent

Pros & Cons of Java Thread
Programming Models

13

Pros & Cons of Java Thread Programming Models

* Now that we've examined the source code for the GCD concurrent app we'll
summarize the pros & cons of the various Java thread programming models

14

Pros & Cons of Java Thread Programming Models

* Pros with extending Thread

public class GCDThread
extends Thread ({

private MainActivity mActivity;

public GCDThread setActivity
(MainActivity activity) {
mActivity = activity;
return this;

}

private int computeGCD
(int numberl, number2) {

}

public void run/()

{ ...}

15

Pros & Cons of Java Thread Programming Models

* Pros with extending Thread

o It's straightforward to extend
the Thread super class

public class GCDThread
extends Thread ({

private MainActivity mActivity;

public GCDThread setActivity
(MainActivity activity) {
mActivity = activity;
return this;

}

private int computeGCD
(int numberl, number2?2) {

}

public void run/()

{ ...}

16

Pros & Cons of Java Thread Programming Models

* Pros with extending Thread

« It's straightforward to extend
the Thread super class

« Just override the run() hook
method!

public class GCDThread
extends Thread ({

private MainActivity mActivity;

public GCDThread setActivity
(MainActivity activity) {
mActivity = activity;
return this;

}

private int computeGCD
(int numberl, number2?2) {

}

public void run/()

{ ... 1}

17

Pros & Cons of Java Thread Programming Models

* Pros with extending Thread public class GCDThread
extends Thread ({

private MainActivity mActivity;
- It also consolidates all state
& methods in one place public GCDThread setActivity
(MainActivity activity) {
mActivity = activity;
return this;

// Main app
Thread thread = new GCDThread()
.setActivity(this)...;

thread.start () ;

18

Pros & Cons of Java Thread Programming Models

* Pros with extending Thread public class GCDThread
extends Thread ({

private MainActivity mActivity;
- It also consolidates all state
& methods in one place public GCDThread setActivity
(MainActivity activity) ({
mActivity = activity;
return this;

 Enables central allocation &
management of the thread

// Main app
Thread thread = new GCDThread()
.setActivity(this)...;

thread.start () ;

19

Pros & Cons of Java Thread Programming Models

Pros with extending Thread public class GCDThread
extends Thread ({

private MainActivity mActivity;
- It also consolidates all state

& methods in one place public GCDThread setActivity
(MainActivity activity) ({
mActivity = activity;
return this;

 This design is useful when the }

thread must be updated during

runtime configuration changes

/ Main app
Thread thread = new GCDThread()
.setActivity(this)...;

thread.start () ;

20

Pros & Cons of Java Thread Programming Models

* Pros with extending Thread public class GCDThread
extends Thread ({

private MainActivity mActivity;
- It also consolidates all state
& methods in one place public GCDThread setActivity
(MainActivity activity) ({
mActivity = activity;
return this;
 This design is useful when the }

thread must be updated during
runtime configuration changes

. . . / Main app
° &g, |n.terrupt|ng/ reStart!ng Thread thread = new GCDThread()
a running thread & reading/ .setActivity (this)...;

writing its state
thread.start () ;

See the upcoming lessons on “*Managing the Java
Lifecycle” & “Managing Multi-threaded Activity State”

Pros & Cons of Java Thread Programming Models

« Cons with extending Thread public class GCDThread
extends Thread {

private int computeGCD
(int numberl, number2) {

}

public void run() {

}

22

Pros & Cons of Java Thread Programming Models

« Cons with extending Thread public class GCDThread

extends Thread
« A subclass must extend the {
Thread superclass

private int computeGCD
(int numberl, number2) {

}

public void run() {

}

23

Pros & Cons of Java Thread Programming Models

Cons with extending Thread public class GCDThread

extends Thread
« A subclass must extend the {

Thread superclass private int computeGCD
 This is restrictive since Java (int numberl, number2) {
only allows one superclass
per subclass! }

public void run() {

}

See docs.oracle.com/javase/tutorial/java/IandI/subclasses.html

https://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html

Pros & Cons of Java Thread Programming Models

« Pros of implementing Runnable public class GCDRunnable
implements Runnable,

implements Serializable,
extends Random {

private int computeGCD
(int numberl, number2?2) {

}

public void run() {

}

25

Pros & Cons of Java Thread Programming Models

« Pros of implementing Runnable public class GCDRunnable

. A subcl : | t Itiol implements Runnable,
: >UbCiass can impiement multipie implements Serializable,
interfaces

extends Random {

private int computeGCD
(int numberl, number2) {

}

public void run() {

}

See docs.oracle.com/javase/tutorial/java/concepts/interface.html

https://docs.oracle.com/javase/tutorial/java/concepts/interface.html

Pros & Cons of Java Thread Programming Models

« Pros of implementing Runnable public class GCDRunnable

. A subcl - ¢ itip| implements Runnable,
SUDCIass can impiement muitipie implements Serializable,

interfaces extends Random ({
« Which enables it to extend e
a different superclass private int computeGCD

(int numberl, number2) {

}

public void run() {

}

See docs.oracle.com/javase/tutorial/java/concepts/interface.html

https://docs.oracle.com/javase/tutorial/java/concepts/interface.html

Pros & Cons of Java Thread Programming Models

« Pros of implementing Runnable public class GCDRunnable
implements Runnable,

{

« Runnables are flexible since they }
can be reused in other contexts

GCDRunnable runnableCommand =
new GCDRunnable(...);

ExecutorService executor =
Executors.newFixedThreadPool
(POOL_SIZE);

executor.execute
(runnableCommand) ;

See upcoming lesson on “the Java Executor framework”

Pros & Cons of Java Thread Programming Models

« Cons of implementing Runnable public class GCDRunnable
implements Runnable,

- A

GCDRunnable runnableCommand =
new GCDRunnable(...);

Thread thr =
new Thread (runnableCommand) ;

thr.start () ;

29

Pros & Cons of Java Thread Programming Models

« Cons of implementing Runnable public class GCDRunnable

i W i - implements Runnable,
* Yields more “"moving parts (

¥ ¢

CAUTION (=
GCDRunnable runnableCommand =
M OVI NG new GCDRunnable(...);
PARTS | oo -

new Thread (runnableCommand) ;

\ —

thr.start() ;

30

Pros & Cons of Java Thread Programming Models
« Cons of implementing Runnable public class GCDRunnable
* Yields more “moving parts” implements Runnable,

. A
* e.g., Runnable & Thread are
separate entities & must be }
managed/accessed separately

GCDRunnable runnableCommand =
new GCDRunnable(...);

Thread thr =
new Thread (runnableCommand) ;

thr.start () ;

This decoupling get complicated if a program needs to access the
state of a runnable, but only holds a reference to the thread object..

Pros & Cons of Java Thread Programming Models

 In practice, Java & Android software often implements Runnable rather than
extending Thread

Thread Runnable

run() run()
start()

*

MyRunnable
AN Y

run()

MyThread

run()

Thread

Thread(Runnable)
O start()

32

Pros & Cons of Java Thread Programming Models

 In practice, Java & Android software often implements Runnable rather than
extending Thread

« Lambda expressions are becoming
popular with Java 8-based platforms

G

Java$8

See www.drdobbs.com/jvm/lambda-expressions-in-java-8/240166764

http://www.drdobbs.com/jvm/lambda-expressions-in-java-8/240166764

End of Overview of
Java Threads (Part 3)

34

