Overview of Java Threads
(Part 2)

Douglas C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Know how to run a Java thread

5

: My

Component

5

onCreate()

rd |

: MyThread

] Q run()

Learning Objectives in this Part of the Lesson

<< Java Class>=

(9 Thread

& yield()void
& currentThread()- Thread
& sleep(long)void
& sleep(long.int)-void
@ Thread()
& Thread(Runnable)
@ Thread(String)
@ start()void
« Recognize common thread methods © run{)-void
= exit()void
@ interrupt():void
& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean
& setPriority(int)-void
o getPriority():int
 join(long)-void
& join(long.int)void
& join()-void
& setDaemon(boolean):void
& isDaemon()-boolean

Learning Objectives in this Part of the Lesson

Thread B
Everything
before the &
uniock on M
& lock M
.wvisible to
everything |___1=x |
. afterthe | =
» Appreciate Java thread “happens-before” lock on M ml:wm
orderings e
¥

Running
Java Threads

Running Java Threads

» There are multiple layers involved My
in creating & starting a thread Component : MyThread
onCreate()

T~ new()

Threading & Synchronization Packages start() |

)
Java Execution Environment (e.g., JVM, ART, etc) ()

System Libraries

Operating System Kernel

11T

See Part 2 of the upcoming lesson on
“Managing the Java Thread Lifecycle”

Running Java Threads

« There are multiple layers involved My
in creating & starting a thread Component

« Creating a new thread object
doesn’t allocate a run-time call
stack of activation records

onCreate()
T = new()

: MyThread

See en.wikipedia.org/wiki/Call stack

https://en.wikipedia.org/wiki/Call_stack

Running

Java Threads

« There are multiple layers involved
in creating & starting a thread

* The runtime stack & other thread
resources are only allocated after

the start() method is called

- My

Component

onCreate()
> 1

: MyThread

) Q run()

Running Java Threads

« There are multiple layers involved My
in creating & starting a thread Component : MyThread

onCreate()
T 2 new()

start() ‘

Q run()

« The Java execution environment calls
a thread’s run() hook method after
start() creates its resources

See wiki.c2.com/?HookMethod

http://wiki.c2.com/?HookMethod

Running Java

"hreads

« There are multiple layers involved
in creating & starting a thread

: My

Component

onCreate()

« Each thread can run concurrently &

block independently

[1

: MyThread

10

Running Java

"hreads

« Any code can generally run in a thread

onCreate()

: My

Component

public void run () {

}

// code to run goes here

7

[1

: MyThread

) Q run()

\

11

Running Java Threads

 Any code can generally run in a thread My

« However, windowing toolkits often Component
restrict which thread can access
GUI components

: MyThread

onCreate()
T = new()

start() |

) Q run()

12

Running Java Threads

* Any code can generally run in a thread My
« However, windowing toolkits often Component

: MyThread

restrict which thread can access

GUI components

* e.g., only the Android UI thread
can access GUI components

onCreate()
[L new()

Q run()

See developer.android.com/training/
multiple-threads/communicate-ui.html

https://developer.android.com/training/multiple-threads/communicate-ui.html

Running Java Threads

» A thread can live as long as its run() hook My
method hasn’t returned Component : MyThread

onCreate()
T new()

start() |

) Q run()

14

Running Java Threads

» A thread can live as long as its run() hook My
method hasn’t returned Component

« The underlying thread scheduler can
suspend & resume a thread many

onCreate()
T = new()

times during its lifecycle >

. &~ = - U T e P -
X 5 M '.rl”’ ,.,,” ~ —V ‘(T g :*-‘.\i -~ r
-) y Y { ; ol a

e

See en.wikipedia.org/wiki/Scheduling (computing)

https://en.wikipedia.org/wiki/Scheduling_(computing)

Running Java Threads

A thread can live as long as its run() hook My
method hasn’t returned Component
« The underlying thread scheduler can c
suspend & resume a thread many ~ °"Creat)

times during its lifecycle

 Scheduler operations are largely invisible
to user code, as long as synchronization
is performed properly..

16

Running Java Threads

 For a thread to execute “forever,” its run()

hook method needs an infinite loop

onCreate()

Component

- My

public void run () {
while (true) { ...
}

}

7

[1

: MyThread

) Q run()

\

17

Running Java Threads

« The thread is dead after run() returns M
- MY : MyThread
Component
onCreate()
T new()
‘4.\:"‘\;:__3\ €————————"
j start() ‘

1k o

18

Running Java |

"hreads

« The thread is dead after run() returns My

A thread can end normally

Component

: MyThread

onCreate()
> 1

public void run () {
while (true) {

return;

}
}

start() ‘

|~

/ Q run()

19

Running Java Threads

« The thread is dead after run() returns M
- VY : MyThread
Component
« Or an uncaught exception can onCreate()
be thrown I new()
e ______ 7
public void run () { start() ‘
while (true) ({ /Q run()
throw new //
SomeException () ; /
}
}
]

See www.javamex.com/tutorials/exceptions/exceptions uncaught handler.shtml

http://www.javamex.com/tutorials/exceptions/exceptions_uncaught_handler.shtml

Running Java Threads

* The join() method allows one thread to

wait for another thread to complete

onCreate()

Component

- My

: MyThread

7

[1

start() |

) Q run()

21

Running Java Threads

* The join() method allows one thread to My

wait for another thread to complete

Component

: MyThread

onCreate()
> 1

Simple form of "barrier
synchronization”

start() |

) Q run()

//
/]

See upcoming lessons on
“Java Barrier Synchronizers”

Running Java Threads

» The join() method allows one thread to My
wait for another thread to complete Component
. ' l
Or a thread can simply evaporate! onCreate()
> 1
|

23

Running Java Threads

« The join() method allows one thread to My
wait for another thread to complete Component
_ _ onCreate()
 The Java execution environment >—1

recycles thread resources

24

Running Java Threads

« The join() method allows one thread to My
wait for another thread to complete Component
_ _ onCreate() O
 The Java execution environment >—1

recycles thread resources O 6
* e.g., runtime stack of activation |
records, thread-specific storage, etc. ; |

25

Some Common Java
Thread Methods

26

Some Common Java Thread Methods

 There are a number of commonly used <<Java Class>>
methods in the Java Thread class © Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join(long.int)void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

See docs.oracle.com/javase/8/
docs/api/java/lang/Thread.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

Some Common Java Thread Methods

« There are a number of commonly used
methods in the Java Thread class, e.q.,

<< Java Class>=

(9 Thread

* void setDaemon ()

e Marks thread as a “"daemon”

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join(long.int)void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

See javarevisited.blogspot.com/2012/03/

what-is-daemon-thread-in-java-and.html

http://javarevisited.blogspot.com/2012/03/what-is-daemon-thread-in-java-and.html

Some Common Java Thread Methods

« There are a number of commonly used <<Java Class>>
methods in the Java Thread class, e.q., © Thread

& yield()void

& currentThread()- Thread
* void start() & sleep(long)-void
. & sleep(long.int)-void

* Allocates thread resources & initiates thread & Thread()

execution by calling the run() hook method & Thread(Runnable)
@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

29

Some Common Java Thread Methods

« There are a number of commonly used <<Java Class>>
methods in the Java Thread class, e.q., © Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

" void run{) @ Thread()
« Hook method where user code zﬁ”Threadiﬂuhnable}
i i Thread(String)
IS supplied @ start()-void
@ run()-void
= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

30

Some Common Java Thread Methods

« There are a number of commonly used <<Java Class>>
methods in the Java Thread class, e.q., © Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

e void join() {fThread[F?.uhnable}
@ Thread(String)

« Waits for a thread to finish @ start()-void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

A simple form of “barrier synchronization”

Some Common Java Thread Methods

« There are a number of commonly used <<Java Class>>
methods in the Java Thread class, e.q., © Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

* void sleep(long time) @ start()-void

. . . @ run()-void

« Sleeps for given time in ms = exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

32

Some Common Java Thread Methods

« There are a number of commonly used <<Java Class>>
methods in the Java Thread class, e.q., © Thread

& yield()void
& currentThread()- Thread
& sleep(long)void
& sleep(long.int)-void
@ Thread()
& Thread(Runnable)
@ Thread(String)
@ start()void
@ run()-void
= exit()void
« Object for current Thread © interrupt()-void
@ interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean
& setPriority(int)-void
o getPriority():int
 join(long)-void
& join{long.int)-void
& join()-void
& setDaemon(boolean):void
& isDaemon()-boolean

* Thread currentThread()

33

Some Common Java Thread Methods

« There are a number of commonly used <<Java Class>>
methods in the Java Thread class, e.q., © Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

e void interrupt () {}Sinterrup’[[}:vnid

@ interrupted():boolean
» Post an interrupt request to a Thread @ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

See part 3 of upcoming lesson on
“Managing the Java Thread Lifecycle”

Some Common Java Thread Methods

« There are a number of commonly used <<Java Class>>
methods in the Java Thread class, e.q., © Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean

* boolean isInterrupted() @ isInterrupted():boclean
- Tests whether a thread has been interrupted ?j;‘;fﬂ;tﬁf}i”md

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

isInterrupted() can be called multiple times
w/out affecting the interrupted status

Some Common Java Thread Methods

« There are a number of commonly used <<Java Class>>
methods in the Java Thread class, e.q., © Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

- Tests whether current thread has been interrupted | ¢ getPriority(yint
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

* boolean interrupted()

interrupted() clears the /nterrupted
status the first time it's called

Some Common Java Thread Methods

« There are a number of commonly used <<Java Class>>
methods in the Java Thread class, e.q., © Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

* void setPriority(int newPriority) o getPriority():int

. . . & join{long)-void
& int getPriority () & join(long.int):void
» Set & get the priority of a Thread & join() void

& setDaemon(boolean):void
& isDaemon()-boolean

37

Java Thread "Happens-
Before” Orderings

38

Java Thread “"Happens-Before” Orderings

« Java Threads methods establish “happens-before” <<Java Class>>
orderings © Thread
& yield()void

& currentThread()- Thread
& sleep(long)void
& sleep(long.int)-void
@ Thread()
& Thread(Runnable)
- @ Thread(String)
@ start()void
y=1 it @ rur?[}:w:ui!:l
Y B exit()-void
'M @ interrupt():void
Everything & interrupted():boolean
before the ‘ @ isinterrupted():boolean
UTROCK; O WA & isAlive()-boolean

Thread A

L

l —— & setPriority(int)-void
everything I 1=X | o getPriority()-int
afterthe | T — & join{long)-void
lock on M unlock M & join(long.int)void
Y & join{)-void
j:y & setDaemon(boolean):void

& isDaemon()-boolean

See en.wikipedia.org/
wiki/Happened-before

https://en.wikipedia.org/wiki/Happened-before

Java Thread “"Happens-Before” Orderings

 Java Threads methods establish “happens-before”

orderings

« Ensure that if one event “happens before” another
event, the result must reflect that, even if those
events are actually executed out of order

Thread A

/

T Everything

before the
uniock on M

Thread B

.wvisible to

everything |

after the
lockon M

L.
|

S
i

- | .
-~

<< Java Class>=

(9 Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join(long.int)void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

See en.wikipedia.org/

wiki/Happened-before

https://en.wikipedia.org/wiki/Happened-before

Java Thread “"Happens-Before” Orderings

 Java Threads methods establish “happens-before”

orderings

« Ensure that if one event “happens before” another
event, the result must reflect that, even if those
events are actually executed out of order

 e.g., to optimize program flow & concurrency

Thread A

y=1

.

lock M

Everything

before the
uniock on M

Thread B

.wvisible to
everything
after the
lockon M

<< Java Class>=

(9 Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join(long.int)void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

41

Java Thread “"Happens-Before” Orderings

 Java Threads methods establish “happens-before” <<Java Class>>
orderings (® Thread
& yield()void
& currentThread()- Thread
& sleep(long)void
& sleep(long.int)-void
_ _ @ Thread()

- In general, a happens-before relationship guarantees | &1headRunnable)
that memory written to by statement A is visible to & Thread(String)
statement B IR

Thread 1 l @ run():void
= exit()void
answer = 42 @ interrupt()-void
l & interrupted():boolean
@ isInterrupted()-boolean
ready = true . & isAlive()-boolean
l _\ Thread 2 & setPriority(int)-void
B = (r'e =) & ge.tl:'riljrit‘_-,fl:}fiﬂ’[
 join(long)-void
l.e., statement A completes & join{long.int)-void
its write to "ready” before T T o join()void
statement B starts its read EELILISIREST) & setDaemon(boolean)-void
l & isDaemon():boolean

42

Java Thread “"Happens-Before” Orderings

« Examples of “happens-before” orderings in Java <<Java Class>>
® Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join(long.int)void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

See en.wikipedia.org/wiki/
Java memory model

https://en.wikipedia.org/wiki/Java_memory_model

Java Thread “"Happens-Before” Orderings

« Examples of “happens-before” orderings in Java

« Starting a thread “happens-before” the run() hook
method of the thread is called

Thread tl1l =
new Thread(() ->
System.out.println
("hello world"))
.start () ;

<< Java Class>=

(9 Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

44

Java Thread “"Happens-Before” Orderings

« Examples of “happens-before” orderings in Java

« Starting a thread “happens-before” the run() hook
method of the thread is called, e.g.

Thread tl1l =
new Thread(() ->
System.out.println
("hello world"))

.start () ; \\\\

This lambda plays
the role of the run()
hook method!

<< Java Class>=

(9 Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

45

Java Thread “"Happens-Before” Orderings

« Examples of “happens-before” orderings in Java

« Starting a thread “happens-before” the run() hook
method of the thread is called, e.g.

Thread tl1l =
new Thread(() ->
System.out.println
("hello world"))

.start () ; \\\\\

A threads state is
consistent & visible
before run() starts

<< Java Class>=

(9 Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

46

Java Thread “"Happens-Before” Orderings

« Examples of “happens-before” orderings in Java <<Java Class>>
® Thread

& yield()void
& currentThread()- Thread
« Methods in java.util.concurrent package classes & sleep(long)-void

. \ _ " - & sleep(long.int)-void
also establish “happen-before” orderings =

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join(long.int)void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

See docs.oracle.com/javase/8/docs/api/java/
util/concurrent/package-summary.htmi

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html

Java Thread “"Happens-Before” Orderings

« Examples of “happens-before” orderings in Java

« Methods in java.util.concurrent package classes
also establish “happen-before” orderings, e.g.

// Thread tl
ConcurrentMap concurrentMap =

new ConcurrentHashMap () ;
concurrentMap.put ("key", "value");

// Thread t2
Object value = concurrentMap.get ("key") ;

AN

Placing an object into a concurrent
collection happens-before the access or
removal of the element from the collection

<< Java Class>=

(9 Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

48

Java Thread “"Happens-Before” Orderings

« Examples of “happens-before” orderings in Java <<Java Class>>
® Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread|)
 The termination of a thread “happens-before” a & Thread(Runnable)
join() with the terminated thread & Thread(String)

@ start()void
Thread tl = @ run()-void
new Thread(() -> m exit()-void
System.out.println ® interrupt()-void

" " & interrupted():boolean
("hello world")) @ isInterrupted()-boolean

.start(); & isAlive()-boolean

& setPriority(int)-void
tl.join() ; o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

49

Java Thread “"Happens-Before” Orderings

« Examples of “happens-before” orderings in Java <<Java Class>>
® Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread|)
 The termination of a thread “happens-before” a & Thread(Runnable)
join() with the terminated thread, e.q. & Thread(String)

@ start()void
Thread tl = @ run()-void
new Thread(() -> m exit()-void
System.out.println ® interrupt()-void

" " & interrupted():boolean
("hello world")) @ isInterrupted()-boolean

.start(); & isAlive()-boolean
& setPriority(int)-void
tl.join() ; o getPriority()-int

. . . join(long)-void
This thread terminates after its lambda &join(longint):void

expression runnable completes o join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

50

Java Thread “"Happens-Before” Orderings

« Examples of “happens-before” orderings in Java <<Java Class>>
® Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread|)
 The termination of a thread “happens-before” a & Thread(Runnable)
join() with the terminated thread, e.q. & Thread(String)

@ start()void
Thread tl = @ run()-void
new Thread(() -> m exit()-void
System.out.println ® interrupt()-void

" " & interrupted():boolean
("hello world")) @ isInterrupted()-boolean

.start(); & isAlive()-boolean

& setPriority(int)-void
tl.join() ; o getPriority():int
 join(long)-void

& join{long.int)-void
A thread waiting on a (non-timed) join() only & join():void

resumes after the target thread terminates ¢ setDaemon(boolean)-void
& isDaemon()-boolean

51

Java Thread “Happens-Before” Orderings

« The implementations of these Java Language
Java thread & library classes P s favmioc o L) e JPOA JConsole
are reSpOnSibIe for ensuring Security Int’l RMI IDL Deploy Monitoring Troubleshoot Scripting JVMTI
that these “happens-before”
orderings are preserved

lang and util Collections Cor&:il;::::cy JAR Logging Management

Preferences Ref 0 Regular
API Objects ReMEClON pyessions

You don’t need to understand all the nitty-gritty details of Java’s memory
model — you just need to understand how to use synchronizers properly!

Versioning Zip Instrumentation

End of Overview of
Java Threads (Part 2)

53

Discussion Questions

1. Which of the following are correct statements about the key
differences between the Java Thread start() & run() methods?

a. The start() method sets the priority of the thread & the run()
method allocates the thread’s resources

b. The start() method allocates the thread’s resources &

dispatches the join() method, which implements user-
supplied code

C. The start() method allocates the thread'’s resources &

dispatches the run() method, which implements user-
supplied code

d. The start() method allocates the thread’s resources &

dispatches the run() method, which implements barrier
synchronization

