
Overview of Java Threads 

(Part 2) 

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 

Integrated Systems 

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

• Understand how Java threads support concurrency

• Learn how our case study app works

• Know alternative ways of giving code 
to a thread

• Learn how to pass parameters to 
a Java thread

• Know how to run a Java thread

Learning Objectives in this Part of the Lesson

: My

Component

start()

run()

new()

: MyThread

onCreate()



3

• Understand how Java threads support concurrency

• Learn how our case study app works

• Know alternative ways of giving code 
to a thread

• Learn how to pass parameters to 
a Java thread

• Know how to run a Java thread

• Recognize common thread methods

Learning Objectives in this Part of the Lesson



4

• Understand how Java threads support concurrency

• Learn how our case study app works

• Know alternative ways of giving code 
to a thread

• Learn how to pass parameters to 
a Java thread

• Know how to run a Java thread

• Recognize common thread methods

• Appreciate Java thread “happens-before” 
orderings

Learning Objectives in this Part of the Lesson



5

Running
Java Threads 



6

• There are multiple layers involved 
in creating & starting a thread

Running Java Threads

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM, ART, etc)

Threading & Synchronization Packages

: My

Component

start()

run()

new()

: MyThread

onCreate()

See Part 2 of the upcoming lesson on 
“Managing the Java Thread Lifecycle” 



7

• There are multiple layers involved 
in creating & starting a thread

• Creating a new thread object 
doesn’t allocate a run-time call 
stack of activation records

: My

Component

new()

Running Java Threads

: MyThread

onCreate()

See en.wikipedia.org/wiki/Call_stack

https://en.wikipedia.org/wiki/Call_stack


8

• There are multiple layers involved 
in creating & starting a thread

• Creating a new thread object 
doesn’t allocate a run-time call 
stack of activation records

• The runtime stack & other thread 
resources are only allocated after 
the start() method is called

: My

Component

start()

run()

new()

Running Java Threads

: MyThread

onCreate()



9

• There are multiple layers involved 
in creating & starting a thread

• Creating a new thread object 
doesn’t allocate a run-time call 
stack of activation records

• The runtime stack & other thread 
resources are only allocated after 
the start() method is called

• The Java execution environment calls 
a thread’s run() hook method after 
start() creates its resources 

: My

Component

start()

run()

new()

Running Java Threads

: MyThread

onCreate()

See wiki.c2.com/?HookMethod

http://wiki.c2.com/?HookMethod


10

• There are multiple layers involved 
in creating & starting a thread

• Creating a new thread object 
doesn’t allocate a run-time call 
stack of activation records

• The runtime stack & other thread 
resources are only allocated after 
the start() method is called

• The Java execution environment calls 
a thread’s run() hook method after 
start() creates its resources 

• Each thread can run concurrently &
block independently

: My

Component

start()

run()

new()

Running Java Threads

: MyThread

onCreate()



11

• Any code can generally run in a thread : My

Component

start()

run()

new()

Running Java Threads

: MyThread

onCreate()

public void run(){

// code to run goes here

}



12

• Any code can generally run in a thread

• However, windowing toolkits often 
restrict which thread can access 
GUI components

: My

Component

start()

run()

new()

Running Java Threads

: MyThread

onCreate()



13

• Any code can generally run in a thread

• However, windowing toolkits often 
restrict which thread can access 
GUI components

• e.g., only the Android UI thread 
can access GUI components 

: My

Component

start()

run()

new()

Running Java Threads

: MyThread

See developer.android.com/training/
multiple-threads/communicate-ui.html

onCreate()

https://developer.android.com/training/multiple-threads/communicate-ui.html


14

• A thread can live as long as its run() hook 
method hasn’t returned

Running Java Threads

: My

Component

start()

new()

run()

: MyThread

onCreate()



15

• A thread can live as long as its run() hook 
method hasn’t returned

• The underlying thread scheduler can 
suspend & resume a thread many 
times during its lifecycle

Running Java Threads

: My

Component

onCreate()

start()

run()

new()

: MyThread

See en.wikipedia.org/wiki/Scheduling_(computing)

https://en.wikipedia.org/wiki/Scheduling_(computing)


16

• A thread can live as long as its run() hook 
method hasn’t returned

• The underlying thread scheduler can 
suspend & resume a thread many 
times during its lifecycle

• Scheduler operations are largely invisible 
to user code, as long as synchronization 
is performed properly..

Running Java Threads

: My

Component

start()

run()

new()

: MyThread

onCreate()



17

• For a thread to execute “forever,” its run() 
hook method needs an infinite loop 

Running Java Threads

: My

Component

start()

run()

new()

: MyThread

public void run(){

while (true) { ... }

}

onCreate()



18

Running Java Threads
• The thread is dead after run() returns : My

Component

start()

run()

new()

: MyThread

onCreate()



19

Running Java Threads
• The thread is dead after run() returns

• A thread can end normally
: My

Component

start()

run()

new()

: MyThread

onCreate()

public void run(){

while (true) { 

...

return;

}

}



20

Running Java Threads
• The thread is dead after run() returns

• A thread can end normally

• Or an uncaught exception can
be thrown

: My

Component

start()

run()

new()

: MyThread

onCreate()

public void run(){

while (true) { 

...

throw new

SomeException();

}

}

See www.javamex.com/tutorials/exceptions/exceptions_uncaught_handler.shtml

http://www.javamex.com/tutorials/exceptions/exceptions_uncaught_handler.shtml


21

Running Java Threads
• The join() method allows one thread to 

wait for another thread to complete
: My

Component

start()

run()

new()

join()

: MyThread

onCreate()



22

Running Java Threads
• The join() method allows one thread to 

wait for another thread to complete
: My

Component

start()

run()

new()

join()

: MyThread

See upcoming lessons on 
“Java Barrier Synchronizers”

Simple form of “barrier 
synchronization”

onCreate()



23

: My

Component

Running Java Threads
• The join() method allows one thread to 

wait for another thread to complete

• Or a thread can simply evaporate!
onCreate()



24

: My

Component

Running Java Threads
• The join() method allows one thread to 

wait for another thread to complete

• Or a thread can simply evaporate!

• The Java execution environment
recycles thread resources 

onCreate()



25

: My

Component

Running Java Threads
• The join() method allows one thread to 

wait for another thread to complete

• Or a thread can simply evaporate!

• The Java execution environment
recycles thread resources 

• e.g., runtime stack of activation 
records, thread-specific storage, etc.

onCreate()



26

Some Common Java 
Thread Methods



27

Some Common Java Thread Methods

See docs.oracle.com/javase/8/
docs/api/java/lang/Thread.html

• There are a number of commonly used 
methods in the Java Thread class

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html


28

Some Common Java Thread Methods
• There are a number of commonly used 

methods in the Java Thread class, e.g., 

• void setDaemon() 

• Marks thread as a “daemon”

See javarevisited.blogspot.com/2012/03/
what-is-daemon-thread-in-java-and.html

http://javarevisited.blogspot.com/2012/03/what-is-daemon-thread-in-java-and.html


29

Some Common Java Thread Methods
• There are a number of commonly used 

methods in the Java Thread class, e.g., 

• void setDaemon() 

• void start() 

• Allocates thread resources & initiates thread 
execution by calling the run() hook method



30

Some Common Java Thread Methods
• There are a number of commonly used 

methods in the Java Thread class, e.g., 

• void setDaemon() 

• void start() 

• void run()

• Hook method where user code 
is supplied



31

Some Common Java Thread Methods
• There are a number of commonly used 

methods in the Java Thread class, e.g., 

• void setDaemon() 

• void start() 

• void run() 

• void join() 

• Waits for a thread to finish

A simple form of “barrier synchronization”



32

Some Common Java Thread Methods
• There are a number of commonly used 

methods in the Java Thread class, e.g., 

• void setDaemon() 

• void start() 

• void run() 

• void join() 

• void sleep(long time) 

• Sleeps for given time in ms



33

Some Common Java Thread Methods
• There are a number of commonly used 

methods in the Java Thread class, e.g., 

• void setDaemon() 

• void start() 

• void run() 

• void join() 

• void sleep(long time) 

• Thread currentThread() 

• Object for current Thread 



34

Some Common Java Thread Methods
• There are a number of commonly used 

methods in the Java Thread class, e.g., 

• void setDaemon() 

• void start() 

• void run() 

• void join() 

• void sleep(long time) 

• Thread currentThread() 

• void interrupt() 

• Post an interrupt request to a Thread 

See part 3 of upcoming lesson on 
“Managing the Java Thread Lifecycle” 



35

Some Common Java Thread Methods
• There are a number of commonly used 

methods in the Java Thread class, e.g., 

• void setDaemon() 

• void start() 

• void run() 

• void join() 

• void sleep(long time) 

• Thread currentThread() 

• void interrupt() 

• boolean isInterrupted() 

• Tests whether a thread has been interrupted

isInterrupted() can be called multiple times 
w/out affecting the interrupted status



36

Some Common Java Thread Methods
• There are a number of commonly used 

methods in the Java Thread class, e.g., 

• void setDaemon() 

• void start() 

• void run() 

• void join() 

• void sleep(long time) 

• Thread currentThread() 

• void interrupt() 

• boolean isInterrupted() 

• boolean interrupted() 

• Tests whether current thread has been interrupted

interrupted() clears the interrupted 
status the first time it’s called



37

Some Common Java Thread Methods
• There are a number of commonly used 

methods in the Java Thread class, e.g., 

• void setDaemon() 

• void start() 

• void run() 

• void join() 

• void sleep(long time) 

• Thread currentThread() 

• void interrupt() 

• boolean isInterrupted() 

• boolean interrupted() 

• void setPriority(int newPriority)

& int getPriority()

• Set & get the priority of a Thread



38

Java Thread “Happens-
Before” Orderings



39

Java Thread “Happens-Before” Orderings
• Java Threads methods establish “happens-before” 

orderings 

See en.wikipedia.org/
wiki/Happened-before

https://en.wikipedia.org/wiki/Happened-before


40

• Java Threads methods establish “happens-before” 
orderings 

• Ensure that if one event “happens before” another 
event, the result must reflect that, even if those 
events are actually executed out of order 

Java Thread “Happens-Before” Orderings

See en.wikipedia.org/
wiki/Happened-before

https://en.wikipedia.org/wiki/Happened-before


41

• Java Threads methods establish “happens-before” 
orderings 

• Ensure that if one event “happens before” another 
event, the result must reflect that, even if those 
events are actually executed out of order 

• e.g., to optimize program flow & concurrency

Java Thread “Happens-Before” Orderings



42

• Java Threads methods establish “happens-before” 
orderings 

• Ensure that if one event “happens before” another 
event, the result must reflect that, even if those 
events are actually executed out of order 

• In general, a happens-before relationship guarantees 
that memory written to by statement A is visible to 
statement B

Java Thread “Happens-Before” Orderings

i.e., statement A completes 
its write to “ready” before 
statement B starts its read



43

• Examples of “happens-before” orderings in Java

Java Thread “Happens-Before” Orderings

See en.wikipedia.org/wiki/
Java_memory_model

https://en.wikipedia.org/wiki/Java_memory_model


44

• Examples of “happens-before” orderings in Java

• Starting a thread “happens-before” the run() hook 
method of the thread is called

Thread t1 = 

new Thread(() -> 

System.out.println

("hello world"))

.start();

Java Thread “Happens-Before” Orderings



45

• Examples of “happens-before” orderings in Java

• Starting a thread “happens-before” the run() hook 
method of the thread is called, e.g.

Thread t1 = 

new Thread(() -> 

System.out.println

("hello world"))

.start();

This lambda plays 
the role of the run() 

hook method!

Java Thread “Happens-Before” Orderings



46

• Examples of “happens-before” orderings in Java

• Starting a thread “happens-before” the run() hook 
method of the thread is called, e.g.

Thread t1 = 

new Thread(() -> 

System.out.println

("hello world"))

.start();

A thread’s state is 
consistent & visible 
before run() starts

Java Thread “Happens-Before” Orderings



47

• Examples of “happens-before” orderings in Java

• Starting a thread “happens-before” the run() hook 
method of the thread is called

• Methods in java.util.concurrent package classes 
also establish “happen-before” orderings

Java Thread “Happens-Before” Orderings

See docs.oracle.com/javase/8/docs/api/java/
util/concurrent/package-summary.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html


48

• Examples of “happens-before” orderings in Java

• Starting a thread “happens-before” the run() hook 
method of the thread is called

• Methods in java.util.concurrent package classes 
also establish “happen-before” orderings, e.g.

Placing an object into a concurrent 
collection happens-before the access or 

removal of the element from the collection

// Thread t1

ConcurrentMap concurrentMap = 

new ConcurrentHashMap(); 

concurrentMap.put("key", "value");

// Thread t2

Object value = concurrentMap.get("key");

Java Thread “Happens-Before” Orderings



49

• Examples of “happens-before” orderings in Java

• Starting a thread “happens-before” the run() hook 
method of the thread is called

• Methods in java.util.concurrent package classes 
also establish “happen-before” orderings

• The termination of a thread “happens-before” a 
join() with the terminated thread

Thread t1 = 

new Thread(() -> 

System.out.println

("hello world"))

.start();

t1.join();

Java Thread “Happens-Before” Orderings



50

• Examples of “happens-before” orderings in Java

• Starting a thread “happens-before” the run() hook 
method of the thread is called

• Methods in java.util.concurrent package classes 
also establish “happen-before” orderings

• The termination of a thread “happens-before” a 
join() with the terminated thread, e.g.

Thread t1 = 

new Thread(() -> 

System.out.println

("hello world"))

.start();

t1.join();

Java Thread “Happens-Before” Orderings

This thread terminates after its lambda 
expression runnable completes



51

• Examples of “happens-before” orderings in Java

• Starting a thread “happens-before” the run() hook 
method of the thread is called

• Methods in java.util.concurrent package classes 
also establish “happen-before” orderings

• The termination of a thread “happens-before” a 
join() with the terminated thread, e.g.

A thread waiting on a (non-timed) join() only 
resumes after the target thread terminates

Java Thread “Happens-Before” Orderings

Thread t1 = 

new Thread(() -> 

System.out.println

("hello world"))

.start();

t1.join();



52

• The implementations of these
Java thread & library classes 
are responsible for ensuring 
that these “happens-before” 
orderings are preserved

Java Thread “Happens-Before” Orderings

You don’t need to understand all the nitty-gritty details of Java’s memory 
model – you just need to understand how to use synchronizers properly!



53

End of Overview of 
Java Threads (Part 2)



54

1. Which of the following are correct statements about the key 
differences between the Java Thread start() & run() methods?

a. The start() method sets the priority of the thread & the run() 
method allocates the thread’s resources

b. The start() method allocates the thread’s resources & 
dispatches the join() method, which implements user-
supplied code

c. The start() method allocates the thread’s resources & 
dispatches the run() method, which implements user-
supplied code

d. The start() method allocates the thread’s resources & 
dispatches the run() method, which implements barrier 
synchronization

Discussion Questions


