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• Understand how Java threads support concurrency

• Learn how our case study app works

• Know alternative ways of giving code 
to a thread

• Learn how to pass parameters to 
a Java thread

• Know how to run a Java thread

Learning Objectives in this Part of the Lesson

: My

Component

start()

run()

new()

: MyThread

onCreate()
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• Understand how Java threads support concurrency

• Learn how our case study app works

• Know alternative ways of giving code 
to a thread

• Learn how to pass parameters to 
a Java thread

• Know how to run a Java thread

• Recognize common thread methods

Learning Objectives in this Part of the Lesson
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• Understand how Java threads support concurrency

• Learn how our case study app works

• Know alternative ways of giving code 
to a thread

• Learn how to pass parameters to 
a Java thread

• Know how to run a Java thread

• Recognize common thread methods

• Appreciate Java thread “happens-before” 
orderings

Learning Objectives in this Part of the Lesson
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Running
Java Threads 
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• There are multiple layers involved 
in creating & starting a thread

Running Java Threads

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM, ART, etc)

Threading & Synchronization Packages

: My

Component

start()

run()

new()

: MyThread

onCreate()

See Part 2 of the upcoming lesson on 
“Managing the Java Thread Lifecycle” 
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• There are multiple layers involved 
in creating & starting a thread

• Creating a new thread object 
doesn’t allocate a run-time call 
stack of activation records

: My

Component

new()

Running Java Threads

: MyThread

onCreate()

See en.wikipedia.org/wiki/Call_stack

https://en.wikipedia.org/wiki/Call_stack
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• There are multiple layers involved 
in creating & starting a thread

• Creating a new thread object 
doesn’t allocate a run-time call 
stack of activation records

• The runtime stack & other thread 
resources are only allocated after 
the start() method is called

: My

Component

start()

run()

new()

Running Java Threads

: MyThread

onCreate()



9

• There are multiple layers involved 
in creating & starting a thread

• Creating a new thread object 
doesn’t allocate a run-time call 
stack of activation records

• The runtime stack & other thread 
resources are only allocated after 
the start() method is called

• The Java execution environment calls 
a thread’s run() hook method after 
start() creates its resources 

: My

Component

start()

run()

new()

Running Java Threads

: MyThread

onCreate()

See wiki.c2.com/?HookMethod

http://wiki.c2.com/?HookMethod
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• There are multiple layers involved 
in creating & starting a thread

• Creating a new thread object 
doesn’t allocate a run-time call 
stack of activation records

• The runtime stack & other thread 
resources are only allocated after 
the start() method is called

• The Java execution environment calls 
a thread’s run() hook method after 
start() creates its resources 

• Each thread can run concurrently &
block independently

: My

Component

start()

run()

new()

Running Java Threads

: MyThread

onCreate()
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• Any code can generally run in a thread : My

Component

start()

run()

new()

Running Java Threads

: MyThread

onCreate()

public void run(){

// code to run goes here

}
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• Any code can generally run in a thread

• However, windowing toolkits often 
restrict which thread can access 
GUI components

: My

Component

start()

run()

new()

Running Java Threads

: MyThread

onCreate()
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• Any code can generally run in a thread

• However, windowing toolkits often 
restrict which thread can access 
GUI components

• e.g., only the Android UI thread 
can access GUI components 

: My

Component

start()

run()

new()

Running Java Threads

: MyThread

See developer.android.com/training/
multiple-threads/communicate-ui.html

onCreate()

https://developer.android.com/training/multiple-threads/communicate-ui.html
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• A thread can live as long as its run() hook 
method hasn’t returned

Running Java Threads

: My

Component

start()

new()

run()

: MyThread

onCreate()
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• A thread can live as long as its run() hook 
method hasn’t returned

• The underlying thread scheduler can 
suspend & resume a thread many 
times during its lifecycle

Running Java Threads

: My

Component

onCreate()

start()

run()

new()

: MyThread

See en.wikipedia.org/wiki/Scheduling_(computing)

https://en.wikipedia.org/wiki/Scheduling_(computing)
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• A thread can live as long as its run() hook 
method hasn’t returned

• The underlying thread scheduler can 
suspend & resume a thread many 
times during its lifecycle

• Scheduler operations are largely invisible 
to user code, as long as synchronization 
is performed properly..

Running Java Threads

: My

Component

start()

run()

new()

: MyThread

onCreate()
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• For a thread to execute “forever,” its run() 
hook method needs an infinite loop 

Running Java Threads

: My

Component

start()

run()

new()

: MyThread

public void run(){

while (true) { ... }

}

onCreate()
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Running Java Threads
• The thread is dead after run() returns : My

Component

start()

run()

new()

: MyThread

onCreate()
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Running Java Threads
• The thread is dead after run() returns

• A thread can end normally
: My

Component

start()

run()

new()

: MyThread

onCreate()

public void run(){

while (true) { 

...

return;

}

}
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Running Java Threads
• The thread is dead after run() returns

• A thread can end normally

• Or an uncaught exception can
be thrown

: My

Component

start()

run()

new()

: MyThread

onCreate()

public void run(){

while (true) { 

...

throw new

SomeException();

}

}

See www.javamex.com/tutorials/exceptions/exceptions_uncaught_handler.shtml

http://www.javamex.com/tutorials/exceptions/exceptions_uncaught_handler.shtml
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Running Java Threads
• The join() method allows one thread to 

wait for another thread to complete
: My

Component

start()

run()

new()

join()

: MyThread

onCreate()
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Running Java Threads
• The join() method allows one thread to 

wait for another thread to complete
: My

Component

start()

run()

new()

join()

: MyThread

See upcoming lessons on 
“Java Barrier Synchronizers”

Simple form of “barrier 
synchronization”

onCreate()



23

: My

Component

Running Java Threads
• The join() method allows one thread to 

wait for another thread to complete

• Or a thread can simply evaporate!
onCreate()
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: My

Component

Running Java Threads
• The join() method allows one thread to 

wait for another thread to complete

• Or a thread can simply evaporate!

• The Java execution environment
recycles thread resources 

onCreate()
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: My

Component

Running Java Threads
• The join() method allows one thread to 

wait for another thread to complete

• Or a thread can simply evaporate!

• The Java execution environment
recycles thread resources 

• e.g., runtime stack of activation 
records, thread-specific storage, etc.

onCreate()
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Some Common Java 
Thread Methods
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Some Common Java Thread Methods

See docs.oracle.com/javase/8/
docs/api/java/lang/Thread.html

• There are a number of commonly used 
methods in the Java Thread class

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
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Some Common Java Thread Methods
• There are a number of commonly used 

methods in the Java Thread class, e.g., 

• void setDaemon() 

• Marks thread as a “daemon”

See javarevisited.blogspot.com/2012/03/
what-is-daemon-thread-in-java-and.html

http://javarevisited.blogspot.com/2012/03/what-is-daemon-thread-in-java-and.html
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Some Common Java Thread Methods
• There are a number of commonly used 

methods in the Java Thread class, e.g., 

• void setDaemon() 

• void start() 

• Allocates thread resources & initiates thread 
execution by calling the run() hook method
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Some Common Java Thread Methods
• There are a number of commonly used 

methods in the Java Thread class, e.g., 

• void setDaemon() 

• void start() 

• void run()

• Hook method where user code 
is supplied
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Some Common Java Thread Methods
• There are a number of commonly used 

methods in the Java Thread class, e.g., 

• void setDaemon() 

• void start() 

• void run() 

• void join() 

• Waits for a thread to finish

A simple form of “barrier synchronization”
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Some Common Java Thread Methods
• There are a number of commonly used 

methods in the Java Thread class, e.g., 

• void setDaemon() 

• void start() 

• void run() 

• void join() 

• void sleep(long time) 

• Sleeps for given time in ms
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Some Common Java Thread Methods
• There are a number of commonly used 

methods in the Java Thread class, e.g., 

• void setDaemon() 

• void start() 

• void run() 

• void join() 

• void sleep(long time) 

• Thread currentThread() 

• Object for current Thread 
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Some Common Java Thread Methods
• There are a number of commonly used 

methods in the Java Thread class, e.g., 

• void setDaemon() 

• void start() 

• void run() 

• void join() 

• void sleep(long time) 

• Thread currentThread() 

• void interrupt() 

• Post an interrupt request to a Thread 

See part 3 of upcoming lesson on 
“Managing the Java Thread Lifecycle” 
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Some Common Java Thread Methods
• There are a number of commonly used 

methods in the Java Thread class, e.g., 

• void setDaemon() 

• void start() 

• void run() 

• void join() 

• void sleep(long time) 

• Thread currentThread() 

• void interrupt() 

• boolean isInterrupted() 

• Tests whether a thread has been interrupted

isInterrupted() can be called multiple times 
w/out affecting the interrupted status
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Some Common Java Thread Methods
• There are a number of commonly used 

methods in the Java Thread class, e.g., 

• void setDaemon() 

• void start() 

• void run() 

• void join() 

• void sleep(long time) 

• Thread currentThread() 

• void interrupt() 

• boolean isInterrupted() 

• boolean interrupted() 

• Tests whether current thread has been interrupted

interrupted() clears the interrupted 
status the first time it’s called
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Some Common Java Thread Methods
• There are a number of commonly used 

methods in the Java Thread class, e.g., 

• void setDaemon() 

• void start() 

• void run() 

• void join() 

• void sleep(long time) 

• Thread currentThread() 

• void interrupt() 

• boolean isInterrupted() 

• boolean interrupted() 

• void setPriority(int newPriority)

& int getPriority()

• Set & get the priority of a Thread
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Java Thread “Happens-
Before” Orderings
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Java Thread “Happens-Before” Orderings
• Java Threads methods establish “happens-before” 

orderings 

See en.wikipedia.org/
wiki/Happened-before

https://en.wikipedia.org/wiki/Happened-before
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• Java Threads methods establish “happens-before” 
orderings 

• Ensure that if one event “happens before” another 
event, the result must reflect that, even if those 
events are actually executed out of order 

Java Thread “Happens-Before” Orderings

See en.wikipedia.org/
wiki/Happened-before

https://en.wikipedia.org/wiki/Happened-before
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• Java Threads methods establish “happens-before” 
orderings 

• Ensure that if one event “happens before” another 
event, the result must reflect that, even if those 
events are actually executed out of order 

• e.g., to optimize program flow & concurrency

Java Thread “Happens-Before” Orderings
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• Java Threads methods establish “happens-before” 
orderings 

• Ensure that if one event “happens before” another 
event, the result must reflect that, even if those 
events are actually executed out of order 

• In general, a happens-before relationship guarantees 
that memory written to by statement A is visible to 
statement B

Java Thread “Happens-Before” Orderings

i.e., statement A completes 
its write to “ready” before 
statement B starts its read
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• Examples of “happens-before” orderings in Java

Java Thread “Happens-Before” Orderings

See en.wikipedia.org/wiki/
Java_memory_model

https://en.wikipedia.org/wiki/Java_memory_model
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• Examples of “happens-before” orderings in Java

• Starting a thread “happens-before” the run() hook 
method of the thread is called

Thread t1 = 

new Thread(() -> 

System.out.println

("hello world"))

.start();

Java Thread “Happens-Before” Orderings
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• Examples of “happens-before” orderings in Java

• Starting a thread “happens-before” the run() hook 
method of the thread is called, e.g.

Thread t1 = 

new Thread(() -> 

System.out.println

("hello world"))

.start();

This lambda plays 
the role of the run() 

hook method!

Java Thread “Happens-Before” Orderings
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• Examples of “happens-before” orderings in Java

• Starting a thread “happens-before” the run() hook 
method of the thread is called, e.g.

Thread t1 = 

new Thread(() -> 

System.out.println

("hello world"))

.start();

A thread’s state is 
consistent & visible 
before run() starts

Java Thread “Happens-Before” Orderings
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• Examples of “happens-before” orderings in Java

• Starting a thread “happens-before” the run() hook 
method of the thread is called

• Methods in java.util.concurrent package classes 
also establish “happen-before” orderings

Java Thread “Happens-Before” Orderings

See docs.oracle.com/javase/8/docs/api/java/
util/concurrent/package-summary.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html
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• Examples of “happens-before” orderings in Java

• Starting a thread “happens-before” the run() hook 
method of the thread is called

• Methods in java.util.concurrent package classes 
also establish “happen-before” orderings, e.g.

Placing an object into a concurrent 
collection happens-before the access or 

removal of the element from the collection

// Thread t1

ConcurrentMap concurrentMap = 

new ConcurrentHashMap(); 

concurrentMap.put("key", "value");

// Thread t2

Object value = concurrentMap.get("key");

Java Thread “Happens-Before” Orderings
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• Examples of “happens-before” orderings in Java

• Starting a thread “happens-before” the run() hook 
method of the thread is called

• Methods in java.util.concurrent package classes 
also establish “happen-before” orderings

• The termination of a thread “happens-before” a 
join() with the terminated thread

Thread t1 = 

new Thread(() -> 

System.out.println

("hello world"))

.start();

t1.join();

Java Thread “Happens-Before” Orderings
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• Examples of “happens-before” orderings in Java

• Starting a thread “happens-before” the run() hook 
method of the thread is called

• Methods in java.util.concurrent package classes 
also establish “happen-before” orderings

• The termination of a thread “happens-before” a 
join() with the terminated thread, e.g.

Thread t1 = 

new Thread(() -> 

System.out.println

("hello world"))

.start();

t1.join();

Java Thread “Happens-Before” Orderings

This thread terminates after its lambda 
expression runnable completes
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• Examples of “happens-before” orderings in Java

• Starting a thread “happens-before” the run() hook 
method of the thread is called

• Methods in java.util.concurrent package classes 
also establish “happen-before” orderings

• The termination of a thread “happens-before” a 
join() with the terminated thread, e.g.

A thread waiting on a (non-timed) join() only 
resumes after the target thread terminates

Java Thread “Happens-Before” Orderings

Thread t1 = 

new Thread(() -> 

System.out.println

("hello world"))

.start();

t1.join();
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• The implementations of these
Java thread & library classes 
are responsible for ensuring 
that these “happens-before” 
orderings are preserved

Java Thread “Happens-Before” Orderings

You don’t need to understand all the nitty-gritty details of Java’s memory 
model – you just need to understand how to use synchronizers properly!
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End of Overview of 
Java Threads (Part 2)
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1. Which of the following are correct statements about the key 
differences between the Java Thread start() & run() methods?

a. The start() method sets the priority of the thread & the run() 
method allocates the thread’s resources

b. The start() method allocates the thread’s resources & 
dispatches the join() method, which implements user-
supplied code

c. The start() method allocates the thread’s resources & 
dispatches the run() method, which implements user-
supplied code

d. The start() method allocates the thread’s resources & 
dispatches the run() method, which implements barrier 
synchronization

Discussion Questions


