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Learning Objectives in this Part of the Lesson

« Know how to run a Java thread
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Learning Objectives in this Part of the Lesson

<< Java Class>=

(9 Thread

& yield()void
& currentThread()- Thread
& sleep(long)void
& sleep(long.int)-void
@ Thread()
& Thread(Runnable)
@ Thread(String)
@ start()void
« Recognize common thread methods © run{)-void
= exit()void
@ interrupt():void
& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean
& setPriority(int)-void
o getPriority():int
 join(long)-void
& join(long.int)void
& join()-void
& setDaemon(boolean):void
& isDaemon()-boolean
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Running Java Threads

» There are multiple layers involved My
in creating & starting a thread Component : MyThread
onCreate()

T~ new()

Threading & Synchronization Packages start() |

)
Java Execution Environment (e.g., JVM, ART, etc) ()

System Libraries

Operating System Kernel

11T

See Part 2 of the upcoming lesson on
“Managing the Java Thread Lifecycle”




Running Java Threads

« There are multiple layers involved My
in creating & starting a thread Component

« Creating a new thread object
doesn’t allocate a run-time call
stack of activation records

onCreate()
T = new()

: MyThread

See en.wikipedia.org/wiki/Call stack



https://en.wikipedia.org/wiki/Call_stack

Running

Java Threads

« There are multiple layers involved
in creating & starting a thread

* The runtime stack & other thread
resources are only allocated after

the start() method is called

- My

Component

onCreate()
> 1

: MyThread

) Q run()




Running Java Threads

« There are multiple layers involved My
in creating & starting a thread Component : MyThread

onCreate()
T 2 new()

start() ‘

Q run()

« The Java execution environment calls
a thread’s run() hook method after
start() creates its resources

See wiki.c2.com/?HookMethod



http://wiki.c2.com/?HookMethod

Running Java

"hreads

« There are multiple layers involved
in creating & starting a thread

: My

Component

onCreate()

« Each thread can run concurrently &

block independently

[ 1

: MyThread
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Running Java

"hreads

« Any code can generally run in a thread

onCreate()

: My

Component

public void run () {

}

// code to run goes here

7

[ 1

: MyThread

) Q run()

\
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Running Java Threads

 Any code can generally run in a thread My

« However, windowing toolkits often Component
restrict which thread can access
GUI components

: MyThread

onCreate()
T = new()

start() |

) Q run()
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Running Java Threads

* Any code can generally run in a thread My
« However, windowing toolkits often Component

: MyThread

restrict which thread can access

GUI components

* e.g., only the Android UI thread
can access GUI components

onCreate()
[ L new()

Q run()

See developer.android.com/training/
multiple-threads/communicate-ui.html



https://developer.android.com/training/multiple-threads/communicate-ui.html

Running Java Threads

» A thread can live as long as its run() hook My
method hasn’t returned Component : MyThread

onCreate()
T new()

start() |

) Q run()
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Running Java Threads

» A thread can live as long as its run() hook My
method hasn’t returned Component

« The underlying thread scheduler can
suspend & resume a thread many

onCreate()
T = new()

times during its lifecycle >

. &~ = - U T e P -
X 5 M '.rl”’ ,.,,” ~ —V ‘( T g :*-‘.\i -~ r
- ) y Y { ; ol a

e

See en.wikipedia.org/wiki/Scheduling (computing)



https://en.wikipedia.org/wiki/Scheduling_(computing)

Running Java Threads

A thread can live as long as its run() hook My
method hasn’t returned Component
« The underlying thread scheduler can c
suspend & resume a thread many ~ °"Creat)

times during its lifecycle

 Scheduler operations are largely invisible
to user code, as long as synchronization
is performed properly..

16



Running Java Threads

 For a thread to execute “forever,” its run()

hook method needs an infinite loop

onCreate()

Component

- My

public void run () {
while (true) { ...
}

}

7

[ 1

: MyThread

) Q run()

\
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Running Java Threads

« The thread is dead after run() returns M
- MY : MyThread
Component
onCreate()
T new()
‘4.\:"‘\;:__3\ €————————"
j start() ‘

1k o
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Running Java |

"hreads

« The thread is dead after run() returns My

A thread can end normally

Component

: MyThread

onCreate()
> 1

public void run () {
while (true) {

return;

}
}

start() ‘

|~

/ Q run()
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Running Java Threads

« The thread is dead after run() returns M
- VY : MyThread
Component
« Or an uncaught exception can onCreate()
be thrown I new()
e ______ 7
public void run () { start() ‘
while (true) ({ /Q run()
throw new //
SomeException () ; /
}
}
]

See www.javamex.com/tutorials/exceptions/exceptions uncaught handler.shtml



http://www.javamex.com/tutorials/exceptions/exceptions_uncaught_handler.shtml

Running Java Threads

* The join() method allows one thread to

wait for another thread to complete

onCreate()

Component

- My

: MyThread

7

[ 1

start() |

) Q run()
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Running Java Threads

* The join() method allows one thread to My

wait for another thread to complete

Component

: MyThread

onCreate()
> 1

Simple form of "barrier
synchronization”

start() |

) Q run()

//
/ ]

See upcoming lessons on
“Java Barrier Synchronizers”




Running Java Threads

» The join() method allows one thread to My
wait for another thread to complete Component
. ' l
Or a thread can simply evaporate! onCreate()
> 1
|

23



Running Java Threads

« The join() method allows one thread to My
wait for another thread to complete Component
_ _ onCreate()
 The Java execution environment >—1

recycles thread resources

24



Running Java Threads

« The join() method allows one thread to My
wait for another thread to complete Component
_ _ onCreate() O
 The Java execution environment >—1

recycles thread resources O 6
* e.g., runtime stack of activation |
records, thread-specific storage, etc. ; |

25



Some Common Java
Thread Methods

26



Some Common Java Thread Methods

 There are a number of commonly used <<Java Class>>
methods in the Java Thread class © Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join(long.int)void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

See docs.oracle.com/javase/8/
docs/api/java/lang/Thread.html



https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

Some Common Java Thread Methods

« There are a number of commonly used
methods in the Java Thread class, e.q.,

<< Java Class>=

(9 Thread

* void setDaemon ()

e Marks thread as a “"daemon”

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join(long.int)void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

See javarevisited.blogspot.com/2012/03/

what-is-daemon-thread-in-java-and.html



http://javarevisited.blogspot.com/2012/03/what-is-daemon-thread-in-java-and.html

Some Common Java Thread Methods

« There are a number of commonly used <<Java Class>>
methods in the Java Thread class, e.q., © Thread

& yield()void

& currentThread()- Thread
* void start() & sleep(long)-void
. & sleep(long.int)-void

* Allocates thread resources & initiates thread & Thread()

execution by calling the run() hook method & Thread(Runnable)
@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean
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Some Common Java Thread Methods

« There are a number of commonly used <<Java Class>>
methods in the Java Thread class, e.q., © Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

" void run{) @ Thread()
« Hook method where user code zﬁ”Threadiﬂuhnable}
i i Thread(String)
IS supplied @ start()-void
@ run()-void
= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean
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Some Common Java Thread Methods

« There are a number of commonly used <<Java Class>>
methods in the Java Thread class, e.q., © Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

e void join() {fThread[F?.uhnable}
@ Thread(String)

« Waits for a thread to finish @ start()-void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

A simple form of “barrier synchronization”




Some Common Java Thread Methods

« There are a number of commonly used <<Java Class>>
methods in the Java Thread class, e.q., © Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

* void sleep(long time) @ start()-void

. . . @ run()-void

« Sleeps for given time in ms = exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean
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Some Common Java Thread Methods

« There are a number of commonly used <<Java Class>>
methods in the Java Thread class, e.q., © Thread

& yield()void
& currentThread()- Thread
& sleep(long)void
& sleep(long.int)-void
@ Thread()
& Thread(Runnable)
@ Thread(String)
@ start()void
@ run()-void
= exit()void
« Object for current Thread © interrupt()-void
@ interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean
& setPriority(int)-void
o getPriority():int
 join(long)-void
& join{long.int)-void
& join()-void
& setDaemon(boolean):void
& isDaemon()-boolean

* Thread currentThread()

33



Some Common Java Thread Methods

« There are a number of commonly used <<Java Class>>
methods in the Java Thread class, e.q., © Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

e void interrupt () {}Sinterrup’[[}:vnid

@ interrupted():boolean
» Post an interrupt request to a Thread @ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

See part 3 of upcoming lesson on
“Managing the Java Thread Lifecycle”




Some Common Java Thread Methods

« There are a number of commonly used <<Java Class>>
methods in the Java Thread class, e.q., © Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean

* boolean isInterrupted() @ isInterrupted():boclean
- Tests whether a thread has been interrupted ?j;‘;fﬂ;tﬁf}i”md

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

isInterrupted() can be called multiple times
w/out affecting the interrupted status




Some Common Java Thread Methods

« There are a number of commonly used <<Java Class>>
methods in the Java Thread class, e.q., © Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

- Tests whether current thread has been interrupted | ¢ getPriority(yint
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

* boolean interrupted()

interrupted() clears the /nterrupted
status the first time it's called




Some Common Java Thread Methods

« There are a number of commonly used <<Java Class>>
methods in the Java Thread class, e.q., © Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

* void setPriority(int newPriority) o getPriority():int

. . . & join{long)-void
& int getPriority () & join(long.int):void
» Set & get the priority of a Thread & join() void

& setDaemon(boolean):void
& isDaemon()-boolean

37



Java Thread "Happens-
Before” Orderings
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Java Thread “"Happens-Before” Orderings

« Java Threads methods establish “happens-before” <<Java Class>>
orderings © Thread
& yield()void

& currentThread()- Thread
& sleep(long)void
& sleep(long.int)-void
@ Thread()
& Thread(Runnable)
- @ Thread(String)
@ start()void
y=1 it @ rur?[}:w:ui!:l
Y B exit()-void
'M @ interrupt():void
Everything & interrupted():boolean
before the ‘ @ isinterrupted():boolean
UTROCK; O WA & isAlive()-boolean

Thread A

L

l —— & setPriority(int)-void
everything I 1=X | o getPriority()-int
afterthe | T — & join{long)-void
lock on M unlock M & join(long.int)void
Y & join{)-void
j:y & setDaemon(boolean):void

& isDaemon()-boolean

See en.wikipedia.org/
wiki/Happened-before



https://en.wikipedia.org/wiki/Happened-before

Java Thread “"Happens-Before” Orderings

 Java Threads methods establish “happens-before”

orderings

« Ensure that if one event “happens before” another
event, the result must reflect that, even if those
events are actually executed out of order

Thread A

/

T Everything

before the
uniock on M

Thread B

.wvisible to

everything |

after the
lockon M

L.
|

S
i

- | .
-~

<< Java Class>=

(9 Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join(long.int)void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

See en.wikipedia.org/

wiki/Happened-before



https://en.wikipedia.org/wiki/Happened-before

Java Thread “"Happens-Before” Orderings

 Java Threads methods establish “happens-before”

orderings

« Ensure that if one event “happens before” another
event, the result must reflect that, even if those
events are actually executed out of order

 e.g., to optimize program flow & concurrency

Thread A

y=1

.

lock M

Everything

before the
uniock on M

Thread B

.wvisible to
everything
after the
lockon M

<< Java Class>=

(9 Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join(long.int)void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean
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Java Thread “"Happens-Before” Orderings

 Java Threads methods establish “happens-before” <<Java Class>>
orderings (® Thread
& yield()void
& currentThread()- Thread
& sleep(long)void
& sleep(long.int)-void
_ _ @ Thread()

- In general, a happens-before relationship guarantees | &1headRunnable)
that memory written to by statement A is visible to & Thread(String)
statement B IR

Thread 1 l @ run():void
= exit()void
answer = 42 @ interrupt()-void
l & interrupted():boolean
@ isInterrupted()-boolean
ready = true . & isAlive()-boolean
l \\\\_\ Thread 2 & setPriority(int)-void
B = (r'e =) & ge.tl:'riljrit‘_-,fl:}fiﬂ’[
 join(long)-void
l.e., statement A completes & join{long.int)-void
its write to "ready” before T T o join()void
statement B starts its read EELILISIREST) & setDaemon(boolean)-void
l & isDaemon():boolean
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Java Thread “"Happens-Before” Orderings

« Examples of “happens-before” orderings in Java <<Java Class>>
® Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join(long.int)void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

See en.wikipedia.org/wiki/
Java memory model



https://en.wikipedia.org/wiki/Java_memory_model

Java Thread “"Happens-Before” Orderings

« Examples of “happens-before” orderings in Java

« Starting a thread “happens-before” the run() hook
method of the thread is called

Thread tl1l =
new Thread(() ->
System.out.println
("hello world"))
.start () ;

<< Java Class>=

(9 Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean
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Java Thread “"Happens-Before” Orderings

« Examples of “happens-before” orderings in Java

« Starting a thread “happens-before” the run() hook
method of the thread is called, e.g.

Thread tl1l =
new Thread(() ->
System.out.println
("hello world"))

.start () ; \\\\

This lambda plays
the role of the run()
hook method!

<< Java Class>=

(9 Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean
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Java Thread “"Happens-Before” Orderings

« Examples of “happens-before” orderings in Java

« Starting a thread “happens-before” the run() hook
method of the thread is called, e.g.

Thread tl1l =
new Thread(() ->
System.out.println
("hello world"))

.start () ; \\\\\

A threads state is
consistent & visible
before run() starts

<< Java Class>=

(9 Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean
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Java Thread “"Happens-Before” Orderings

« Examples of “happens-before” orderings in Java <<Java Class>>
® Thread

& yield()void
& currentThread()- Thread
« Methods in java.util.concurrent package classes & sleep(long)-void

. \ _ " - & sleep(long.int)-void
also establish “happen-before” orderings =

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join(long.int)void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

See docs.oracle.com/javase/8/docs/api/java/
util/concurrent/package-summary.htmi



http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html

Java Thread “"Happens-Before” Orderings

« Examples of “happens-before” orderings in Java

« Methods in java.util.concurrent package classes
also establish “happen-before” orderings, e.g.

// Thread tl
ConcurrentMap concurrentMap =

new ConcurrentHashMap () ;
concurrentMap.put ("key", "value");

// Thread t2
Object value = concurrentMap.get ("key") ;

AN

Placing an object into a concurrent
collection happens-before the access or
removal of the element from the collection

<< Java Class>=

(9 Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean
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Java Thread “"Happens-Before” Orderings

« Examples of “happens-before” orderings in Java <<Java Class>>
® Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread|)
 The termination of a thread “happens-before” a & Thread(Runnable)
join() with the terminated thread & Thread(String)

@ start()void
Thread tl = @ run()-void
new Thread(() -> m exit()-void
System.out.println ® interrupt()-void

" " & interrupted():boolean
("hello world")) @ isInterrupted()-boolean

.start(); & isAlive()-boolean

& setPriority(int)-void
tl.join() ; o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean
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Java Thread “"Happens-Before” Orderings

« Examples of “happens-before” orderings in Java <<Java Class>>
® Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread|)
 The termination of a thread “happens-before” a & Thread(Runnable)
join() with the terminated thread, e.q. & Thread(String)

@ start()void
Thread tl = @ run()-void
new Thread(() -> m exit()-void
System.out.println ® interrupt()-void

" " & interrupted():boolean
("hello world")) @ isInterrupted()-boolean

.start(); & isAlive()-boolean
& setPriority(int)-void
tl.join() ; o getPriority()-int

. . .  join(long)-void
This thread terminates after its lambda &join(longint):void

expression runnable completes o join()-void

& setDaemon(boolean):void
& isDaemon()-boolean
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Java Thread “"Happens-Before” Orderings

« Examples of “happens-before” orderings in Java <<Java Class>>
® Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread|)
 The termination of a thread “happens-before” a & Thread(Runnable)
join() with the terminated thread, e.q. & Thread(String)

@ start()void
Thread tl = @ run()-void
new Thread(() -> m exit()-void
System.out.println ® interrupt()-void

" " & interrupted():boolean
("hello world")) @ isInterrupted()-boolean

.start(); & isAlive()-boolean

& setPriority(int)-void
tl.join() ; o getPriority():int
 join(long)-void

& join{long.int)-void
A thread waiting on a (non-timed) join() only & join():void

resumes after the target thread terminates ¢ setDaemon(boolean)-void
& isDaemon()-boolean
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Java Thread “Happens-Before” Orderings

« The implementations of these Java Language
Java thread & library classes P s favmioc o L) e JPOA JConsole
are reSpOnSibIe for ensuring Security  Int’l RMI IDL  Deploy Monitoring Troubleshoot Scripting JVMTI
that these “happens-before”
orderings are preserved

lang and util  Collections Cor&:il;::::cy JAR Logging Management

Preferences Ref 0 Regular
API Objects  ReMEClON  pyessions

You don’t need to understand all the nitty-gritty details of Java’s memory
model — you just need to understand how to use synchronizers properly!

Versioning Zip Instrumentation




End of Overview of
Java Threads (Part 2)
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Discussion Questions

1. Which of the following are correct statements about the key
differences between the Java Thread start() & run() methods?

a. The start() method sets the priority of the thread & the run()
method allocates the thread’s resources

b. The start() method allocates the thread’s resources &

dispatches the join() method, which implements user-
supplied code

C. The start() method allocates the thread'’s resources &

dispatches the run() method, which implements user-
supplied code

d. The start() method allocates the thread’s resources &

dispatches the run() method, which implements barrier
synchronization




