Overview of Java
sSynchronizer Classes

Douglas C. Schmidt
@ d.schmidt@uandernilt.edu
- www.dre.vanderhilt.edu/~schmidt

E 7 Institute for Software
Integrated Systems
Vanderhilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Lesson

 Know the key synchronizers Java Class e
fined in '
defined the Java class “brary ReentrantLock A reentrant mutual exclusion lock that
extends the built-in monitor lock

capabilities
ReentrantRead Improves performance when resources
WriteLock are read much more often than written
StampedLock A readers-writer lock that’s more

efficient than ReentrantReadWriteLock

Semaphore Maintains permits that controls thread
access to limited # of shared resources

ConditionObject Allows Thread to block until a condition
becomes true

CountDown Allows one or more threads to wait

Latch until a set of operations being
performed in other threads complete

CyclicBarrier Allows a set of threads to all wait for
each other to reach a common barrier
point

Phaser A more flexible reusable

synchronization barrier

Learning Objectives in this Lesson

 Recognize synchronizer usage
considerations

Performance

Productivity

Overview of Java
Synchronizer Classes

Overview of Java Synchronizer Classes

» The java.util.concurrent & java.
synchronizers

util.concurrent.locks packages define many

* e.g., java.util.concurrent &
java.util.concurrent.locks

package Added in API level 1
java.util.concurrent.locks

Interfaces and classes providing a framework for locking and waiting for
conditions that is distinct from built-in synchronization and monitors.
The framework permits much greater flexibility in the use of locks and
conditions, at the expense of more awkward syntax.

The Lock interface supports locking disciplines that differ in semantics
(reentrant, fair, etc), and that can be used in non-block-structured
contexts including hand-over-hand and lock reordering algorithms. The
main implementation is ReentrantLock.

package
java.util.concurrent

Utility classes commonly useful in concurrent programming. This package includes a few small
standardized extensible frameworks, as well as some classes that provide useful functionality and are
otherwise tedious or difficult to implement. Here are brief descriptions of the main components. See also

Thejava.util.ccncurrent.lccksandj

Added in API level 1

ava.util.ccncurrent.atcmicpackage&

See developer.android.com/reference/java/

util/concurrent/package-summary.htmi

http://developer.android.com/reference/java/util/concurrent/package-summary.html

Overview of Java Synchronizer Classes

« We cover Java language features & library classes for synchronization

Java Class Purpose

ReentrantLock A reentrant mutual exclusion lock that extends the built-in
monitor lock capabilities

Reentrant Improves performance when resources are read much more
ReadWriteLock often than written

StampedLock A readers-writer lock that’s more efficient than
ReentrantReadWriteLock

Semaphore Maintains permits that control thread access to limited # of
shared resources

ConditionObject Allows Thread to block until a condition becomes true

CountDown Allows one or more Threads to wait until a set of operations
Latch being performed in other Threads complete

Cyclic Allows a set of Threads to all wait for each other to reach a
Barrier common barrier point

Phaser A more flexible reusable synchronization barrier

We show how these features & classes are
implemented & used in Java & in practice

Overview of Java Synchronizer Classes

« These synchronizers are used
extensively in Java applications Applications
& class libraries

Additional Frameworks & Languages

Threading & Synchronization Packages

Java/INI

Java Virtual Machine

C++/C

C

System Libraries

Operating System Kernel

g = = gg

Overview of Java Synchronlzer Classes

« ReentrantLock

« A mutual exclusion lock that
extends built-in monitor lock
capabilities

<<lava Class>>
(® ReentrantLock

& ReentrantLock()

& ReentrantLock({boolean)

@ lock()void

@ lockinterruptibly()-void

@ tryLock():boolean

@ tryLock(long, TimelUnit)-boolean

@ unlock()void

@ newCondition{):Condition

@ getHoldCount():int

@ isHeldByCurrentThread()-boolean
@ isLocked():boolean

& isFair{)-boolean

& hasQueuedThreads{)boolean

& hasQueuedThread(Thread):boolean
& getQueuelength():int

@ hasWaiters(Condition):boolean

@ getWaitQueuelength{Condition):int
@ toString()

See docs.oracle.com/javase/8/docs/api/java

/util/concurrent/locks/ReentrantLock.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantLock.html

Overview of Java Synchronlzer Classes

« ReentrantLock
<< Java Class>>

(® ReentrantLock

& ReentrantLock()
& ReentrantLock({boolean)

- “Reentrant” means that the ©lock(jvod =
@ lockinterruptibly()-void

thread holding the lock can @ tryl ock{)-boolean

revaUire it without deadlock @ tryLock(long, TimeUnit):boolean

@ unlock()void

@ newCondition{):Condition

@ getHoldCount():int

@ isHeldByCurrentThread()-boolean
@ isLocked():boolean

& isFair{)-boolean

& hasQueuedThreads{)boolean

& hasQueuedThread(Thread):boolean
& getQueuelength():int

@ hasWaiters(Condition):boolean

@ getWaitQueuelength{Condition):int
@ toString()

See en.wikipedia.org/wiki/
Reentrancy (computing)

https://en.wikipedia.org/wiki/Reentrancy_(computing)

Overview of Java Synchronizer Classes

« ReentrantLock
<< Java Class>>

(® ReentrantLock

& ReentrantLock()

& ReentrantLock({boolean)

@ lock()void

@ lockinterruptibly()-void

@ tryLock():boolean

@ tryLock(long, TimelUnit)-boolean

« Must be “fully bracketed” @ unlock()-void -
_ @ newCondition{):Condition
« A thread that acquires a lock @ getHoldCount{):int
must be the one to release it @ isHeldByCurrentThread():boolean

@ isLocked():boolean

& isFair{)-boolean

& hasQueuedThreads{)boolean

& hasQueuedThread(Thread):boolean
& getQueuelength():int

@ hasWaiters(Condition):boolean

@ getWaitQueuelength{Condition):int
@ toString()

See jasleendailydiary.blogspot.com/
2014/06/java-reentrant-lock.html

http://jasleendailydiary.blogspot.com/2014/06/java-reentrant-lock.html

Overview of Java Synchronizer Classes

ReentrantReadWritelLock

Improves performance when
resources read more often

than written

UNDERGRADUATE CATALOG

VANDERBILT UNIVERSITY

2014/2015

Download a pdf file of the Undergraduate
Catalog (15.2 MB)

View specific sections of the catalog
below

e you to
Special Programs for sp t ons, I h b kmark the left
e of t i

<<Java Class>>
® ReentrantReadWriteLock

@ ReentrantReadWriteLock()

@ ReentrantReadWriteLock(boolean)
@ writeLock():WriteLock

@ readLock():ReadLock

& isFair():boolean

@ getReadLockCount():int

@ isWriteLocked():boolean

@ isWriteLockedByCurrentThread():boolean

@ getWriteHoldCount():int

@ getReadHoldCount():int

& hasQueuedThreads():boolean

& hasQueuedThread(Thread):boolean
& getQueueLength():int

@ hasWaiters(Condition):boolean

@ getWaitQueuelLength(Condition):int
@ toString()

See docs.oracle.com/javase/8/docs/api/java/util/

concurrent/locks/ReentrantReadWriteLock.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html

Overview of Java Synchronizer Classes

« ReentrantReadWritelLock

« Has many features
« Both a blessing & a curse..

s Reentrancy

This lock allows both readers and writers to reacquire read or write
locks in the style of a ReentrantLock. Non-reentrant readers are not
allowed until all write locks held by the writing thread have been
released.

Additionally, a writer can acquire the read lock, but not vice-versa.
Among other applications, reentrancy can be useful when write locks
are held during calls or callbacks to methods that perform reads under
read locks. If a reader tries to acquire the write lock it will never
succeed.

¢ Lock downgrading

Reentrancy also allows downgrading from the write lock to a read lock,
by acquiring the write lock, then the read lock and then releasing the
write lock. However, upgrading from a read lock to the write lock is not
possible.

¢ Interruption of lock acquisition

The read lock and write lock both support interruption during lock
acquisition.

e Condition support
The write lock provides a Condition implementation that behaves in
the same way, with respect to the write lock, as the Condition

implementation provided by newCondition() does for ReentrantLock.
This Condition can, of course, only be used with the write lock.

The read lock does not support a Condition and
readLock() .newCondition() throws UnsupportedOperationException.

See docs.oracle.com/javase/8/docs/api/java/util/

concurrent/locks/ReentrantReadWriteLock.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html

Overview of Java Synchronizer Classes

« StampedLock

« A readers-writer lock that's
more efficient than a
ReentrantReadWriteLock

UNDERGRADUATE CATALOG

VANDERBILT UNIVERSITY

2014/2015

Containing general information and courses of study for the 2014/2015 sessien corrected to 18 June 2014

Download a pdf file of the Undergraduate This is the online version of the Undergraduate Catalog, a

Catalog (15.2 MB) printed document of record issued in the fall of each
year. The online version mirrors the actual printed book
View specific sections of the catalog and is not updated until the new edition is printed for
below each year. For ongoing updates to departmental
information, go to the website of the individual
Contents department.
Calendar ABOUT THE PDFs
Please note the catalogs listed below are in pdf format.
The University You will need Adobe Reader to view these pages. If you
do not have Adecbe Reader, you can download a free copy
Vanderbilt University Board at
of Trust http://www.adobe.com/products/acrobat/readstep2.html.
For more information on how to work with these pdfs, see
Vanderbilt University our pdf help page.
Each pdf has beokmarks that will easily navigate you to
Special Programs for specific sections. Select the bookmark icon in the left
Undergraduates panel of the pdf. Note that some of the pages contain
photographs. Before printing photo pages, consider the
Life at vanderbilt extra time and printer ink required.
Admission Printed copies
printed copies of the Undergraduate Catalog are available
Einancial Information on request from the Office of Undergraduate Admissions.
Catalogs of the Graduate Scheol and post-baccalaureate
Scholarships and Need- professional schools of the university are available on
Based Financial Aid request from the dean of the appropriate school. Contact
information for these offices is available on People Finder.
College of Arts & Science
Blair School of Music
School of Fngineering
Peabody College
Index

B !””""'wh

<< Java Class=>=

(® StampedLock

@ StampedLock()

@ writeLock():long

@ tnyWriteLock():long

@ tnyWriteLock(long, TimeUnit):long
@ writeLockinterruptibly():long

@ readLock():long

@ tryReadLock():long

@ tryReadLock(long, TimeUnit):long
@ readLockinterruptibly():long

@ tryOptimisticRead():long

@ validate(long):-boolean

@ unlockWrite({long):void

@ unlockRead(long):void

@ unlock({long)void

@ tryConvertToWriteLock(long):long
@ tryConvertToReadLock(long):long

@ tryConvertToOptimisticRead(long):long

@ tryUnlockWrite():boolean

@ tryUnlockRead():boolean

@ isWriteLocked():boolean

@ isReadLocked():boolean

@ getReadlLockCount():int

@ toString()

@ asReadlLock()-Lock

@ asWnteLock().Lock

@ asReadWnteLock().ReadWriteLock

See docs.oracle.com/javase/8/docs/api/java/

util/concurrent/locks/StampedLock.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/StampedLock.html

Overview of Java Synchronlzer Classes

« StampedLock

<< Java Class=>=

(® StampedLock

@ StampedLock()

@ writeLock():long

@ tnyWriteLock():long

@ tnyWriteLock(long, TimeUnit):long
@ writeLockinterruptibly():long

@ readLock{):long

@ tryReadlLock():long

@ tryReadLock({long, TimeUnit):long
@ readLockinterruptibly():long

@ tryOptimisticRead():long

@ validate(long):-boolean

@ unlockWrite({long):void

@ unlockRead(long):void

@ unlock({long)void

@ tryConvertToWrniteLock(long):long
@ tryConvertToReadLock(long):long
@ tryConvertToOptimisticRead(long):long
@ tryUnlockWrite():boolean

@ tryUnlockRead():boolean

@ isWriteLocked():boolean

@ isReadLocked():boolean

@ getReadlLockCount():int

@ toString()

@ asReadlLock()-Lock

@ asWnteLock().Lock

@ asReadWnteLock().ReadWriteLock

See docs.oracle.com/javase/8/docs/api/java/

util/concurrent/locks/StampedLock.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/StampedLock.html

Overview of Java Synchronlzer Classes

« StampedLock <<Java Class>>
iy (® StampedLock

@ StampedLock()

@ writeLock():long

@ tnyWriteLock():long

@ tnyWriteLock(long, TimeUnit):long
@ writeLockinterruptibly():long

@ readLock{):long

@ tryReadlLock():long

¢ AISO SUppOI‘tS “IOCk @ tryReadLock({long, TimeUnit):long

T " @ readLockinterruptibly():long
u pg rad | ng @ tryOptimisticRead():long
@ validate(long):-boolean
@ unlockWrite({long):void
Class | Classe @ unlockRead(long):void

ECONOMY CLASS /

Flight & Date | Vol et date

@ unlock({long)void

@ tryConvertToWrniteLock(long):long

@ tryConvertToReadLock(long):long

@ tryConvertToOptimisticRead(long):long
@ tryUnlockWrite():boolean

@ tryUnlockRead():boolean

@ isWriteLocked():boolean

@ isReadLocked():boolean

@ getReadlLockCount():int

@ toString()

@ asReadlLock()-Lock

@ asWnteLock().Lock

@ asReadWnteLock().ReadWriteLock

AL

Airline use | A usage Interne

, 0081A YYC27670

Boarding Pass | Carte d'accés a bord

See docs.oracle.com/javase/8/docs/api/java/
util/concurrent/locks/StampedLock.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/StampedLock.html

Overview of Java Synchronizer Classes

« Semaphore

* Maintains permits that control
thread access to limited # of
shared resources

<<Java Class>>
(9 Semaphore

& Semaphore(int)

& Semaphore(int,boolean)

@ acquire():void

@ acquireUninterruptibly():void

@ tryAcquire():boolean

@ tryAcquire(long, TimeUnit):boolean
@ release():void

@ acquire(int):void

@ acquireUninterruptibly(int):void

@ tryAcquire(int):boolean

@ tryAcquire(int,long, TimeUnit):boolean
@ release(int):void

@ availablePermits():int

@ drainPermits():int

@ isFair():boolean

& hasQueuedThreads():boolean

& getQueueLength():int

@ toString()

See docs.oracle.com/javase/8/docs/api/

java/util/concurrent/Semaphore.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Semaphore.html

Overview of Java Synchronizer Classes

« Semaphore

« Operations need not be
fully bracketed..

ping:

PingPongThread

%

run()

print(’

lping")

1

Semaphores

PingPongThread

pong : —)é

run()

print("pong")

0

<<Java Class>>
(9 Semaphore

& Semaphore(int)

& Semaphore(int,boolean)

@ acquire():void

@ acquireUninterruptibly():void

@ tryAcquire():boolean

@ tryAcquire(long, TimeUnit):boolean
@ release():void

@ acquire(int):void

@ acquireUninterruptibly(int):void

@ tryAcquire(int):boolean

@ tryAcquire(int,long, TimeUnit):boolean
@ release(int):void

@ availablePermits():int

@ drainPermits():int

@ isFair():boolean

& hasQueuedThreads():boolean

& getQueueLength():int

@ toString()

17

Overview of Java Synchronlzer Classes

« ConditionObject
« Allows a thread to wait until

<<Java Class>>
(9 ConditionObject

some condition become true

& ConditionObject()

& signal():void

& signalAll():void

& awaitUninterruptibly():void

¢ await():void

¢ awaitNanos(long):long

' awaitUntil(Date):boolean
 await(long, TimeUnit):boolean

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/
locks/AbstractQueuedSynchronizer.ConditionObject.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/AbstractQueuedSynchronizer.ConditionObject.html

Overview of Java Synchronizer Classes

- ConditionObject <<Java Class>>
i (9 ConditionObject
& ConditionObject()
- Always used in conjunction o signal():void
with a ReentrantLock ¢ signalAll():void
¢ awaitUninterruptibly():void
& await():void
¢ awaitNanos(long):long
<<Java Class>> o awaitUntil(Date):boolean
(O ReentrantLock await(long, TimeUnit):boolean
@ ReentrantLock()
@ ReentrantLock{boolean)
@ lock():void

@ lockInterruptibly()-void

@ tryLock():boolean

@ tryLock(long, Timelnit)-boolean
@ unlock():void

@ newCondition():Condition

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/
locks/AbstractQueuedSynchronizer.ConditionObject.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/AbstractQueuedSynchronizer.ConditionObject.html

Overview of Java Synchronizer Classes

« CountDownlLatch
_ <<Java Class>=>
* Allows one or more threads to wait on the & CountDownLatch

completion of operations in other threads & CountDownLatch(int)

@ await():void

@ await(long, TimeUnit):boolean
@ countDown():void

@ getCount():long

@ toString()

~
oY

&

Y % v ‘\'
4 - o i Y
N PO U AC ISR

B —

See docs.oracle.com/javase/8/docs/api/
java/util/concurrent/CountDownLatch.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountDownLatch.html

Overview of Java Synchronizer Classes

CyclicBarrier <<Java Class>>

« Allows a set of threads to all wait for each @& CyclicBarrier
other to reach a common barrier point

& CyclicBarrier(int,Runnable
& CyclicBarrier(int)

@ getParties():int

@ await():int

@ await(long, TimeUnit):int

@ isBroken():boolean

@ reset():void

@ getNumberWaiting():int

-

See docs.oracle.com/javase/8/docs/api/
java/util/concurrent/CyclicBarrier.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CyclicBarrier.html

Overview of Java Synchronizer Classes

 Phaser

A synchronization
barrier that's more
flexible & reusable
than CyclicBarrier
& CountDownLatch

<<Java Class>>
(9 Phaser

& Phaser()

& Phaser(int)

& Phaser(Phaser)

& Phaser(Phaser,int)

@ register():int

@ bulkRegister(int):int

@ arrive():int

@ arriveAndDeregister():ini

@ arriveAndAwaitAdvance():ini
@ awaitAdvance(int):int

@ awaitAdvancelnterruptibly(int):int
@ awaitAdvancelnterruptibly(int,long, TimeUnit):int
@ forceTermination():voic

& getPhase():int

@ getRegisteredParties():int

@ getArrivedParties():int

@ getUnarrivedParties():int

@ getParent():Phaser

@ getRoot():Phaser

@ isTerminated():boolean

<> onAdvance(int,int):boolean
@ toString()

See docs.oracle.com/javase/8/docs/

api/java/util/concurrent/Phaser.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Phaser.html

Java Synchronizer Class
Usage Considerations

23

Java Synchronizer Class Usage Considerations

» Choosing between these synchronizers involve understanding various
tradeoffs between performance & productivity

Performance

Productivity

24

Java Synchronizer Class Usage Considerations

« Choosing between these synchronizers involve understanding various
tradeoffs between performance & productivity

« Some synchronizers (or synchronizer
methods) have more overhead

* e.g., spin locks vs. sleep locks
vs. hybrid locks

See en.wikipedia.org/wiki/Spinlock & docs.oracle.com/
javase/tutorial/essential/concurrency/guardmeth.html

http://en.wikipedia.org/wiki/Spinlock
http://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html

Java Synchronizer Class Usage Considerations

» Choosing between these synchronizers involve understanding various
tradeoffs between performance & productivity

<<needs>> /\\ <<owns>>
« Some synchronizers are harder /_) b’ *\

to program correctly than others
- e.g., risk of deadlock from non- T, _’Z "Z T,

reentrant locking semantics \’
(- Jg

<<O0wWns>> L <<needs>>
1

Deadlocks are problematic in
object-oriented frameworks due to
callbacks & complex control flows

See en.wikipedia.org/wiki/Deadlock

https://en.wikipedia.org/wiki/Deadlock

Java Synchronizer Class Usage Considerations

Java synch onizers differ from Java bU|It in monitor objects
L "“"”"“ ¥

0* ' ' LY A x
“,’,‘:‘{: #(#_’Qw,“ W

o ‘__*. c!(-\\n.q':. ;.
[V

.H l‘] "“\.

Java Synchronizer Class Usage Considerations

« Java synchronizers differ from Java built-in monitor objects, e.g.

» They are largely written in Java
rather than C/C++

28

Java Synchronizer Class Usage Considerations

« Java synchronizers differ from Java built-in monitor objects, e.g.

» They are largely written in Java
rather than C/C++

 Some low-level methods
written in native C/C++

* e.g., compareAndSwaplnt(),
park(), unpark(), etc.

Concurrency

And few words about concurrency with Unsafe. compareAndSwap methods
are atomic and can be used to implement high-performance lock-free data

structures.

For example, consider the problem to increment value in the shared object

using lot of threads.

First we define simple interface Counter:

interface Counter {
vold increment();
long getCounter();

}

Then we define worker thread CounterClient, that uses Counter:

class CounterClient implements Runnable {
private Counter c;

private int numj;

public CounterClient(Counter c, int num) {

this.c = ¢;
this.num = numj;
}
@ov d
u

for (int i = @5 i < num; i++) {
C. e

See mishadoff.com/blog/java-maaic

-part-4-sun-dot-misc-dot-unsafe

http://mishadoff.com/blog/java-magic-part-4-sun-dot-misc-dot-unsafe

Java Synchronizer Class Usage Considerations

« Java synchronizers differ from Java built-in monitor objects, e.g.

« They provide many more features
& have more powerful semantics

30

End of Overview of
Java Synchronizer Classes

31

