
Overview of Java 

Synchronizer Classes

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 

Integrated Systems 

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Lesson
• Know the key synchronizers

defined in the Java class library
Java Class Purpose

ReentrantLock A reentrant mutual exclusion lock that 
extends the built-in monitor lock 
capabilities

ReentrantRead
WriteLock

Improves performance when resources 
are read much more often than written

StampedLock A readers-writer lock that’s more 
efficient than ReentrantReadWriteLock

Semaphore Maintains permits that controls thread 
access to limited # of shared resources

ConditionObject Allows Thread to block until a condition 
becomes true

CountDown
Latch

Allows one or more threads to wait 
until a set of operations being 
performed in other threads complete

CyclicBarrier Allows a set of threads to all wait for 
each other to reach a common barrier 
point

Phaser A more flexible reusable 
synchronization barrier



3

Learning Objectives in this Lesson
• Know the key synchronizers

defined in the Java class library

• Recognize synchronizer usage
considerations

Performance Productivity



4

Overview of Java 
Synchronizer Classes



5

• The java.util.concurrent & java.util.concurrent.locks packages define many
synchronizers

• e.g., java.util.concurrent &
java.util.concurrent.locks

See developer.android.com/reference/java/
util/concurrent/package-summary.html

Overview of Java Synchronizer Classes

http://developer.android.com/reference/java/util/concurrent/package-summary.html


6

• We cover Java language features & library classes for synchronization

Java Class Purpose

ReentrantLock A reentrant mutual exclusion lock that extends the built-in
monitor lock capabilities

Reentrant
ReadWriteLock

Improves performance when resources are read much more 
often than written

StampedLock A readers-writer lock that’s more efficient than 
ReentrantReadWriteLock

Semaphore Maintains permits that control thread access to limited # of 
shared resources

ConditionObject Allows Thread to block until a condition becomes true

CountDown
Latch

Allows one or more Threads to wait until a set of operations 
being performed in other Threads complete

Cyclic
Barrier

Allows a set of Threads to all wait for each other to reach a 
common barrier point

Phaser A more flexible reusable synchronization barrier

We show how these features & classes are 
implemented & used in Java & in practice

Overview of Java Synchronizer Classes



7

• These synchronizers are used 
extensively in Java applications 
& class libraries

Additional Frameworks & Languages

Operating System Kernel

Applications

System Libraries

Java Virtual Machine 

Threading & Synchronization Packages

Ja
va

/J
N

I
C
+

+
/C

C

Overview of Java Synchronizer Classes



8

• ReentrantLock

• A mutual exclusion lock that 
extends built-in monitor lock 
capabilities

See docs.oracle.com/javase/8/docs/api/java
/util/concurrent/locks/ReentrantLock.html

Overview of Java Synchronizer Classes

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantLock.html


9

• ReentrantLock

• A mutual exclusion lock that 
extends built-in monitor lock 
capabilities

• “Reentrant” means that the
thread holding the lock can
reacquire it without deadlock

See en.wikipedia.org/wiki/
Reentrancy_(computing)

Overview of Java Synchronizer Classes

https://en.wikipedia.org/wiki/Reentrancy_(computing)


10

• ReentrantLock

• A mutual exclusion lock that 
extends built-in monitor lock 
capabilities

• “Reentrant” means that the
thread holding the lock can
reacquire it without deadlock

• Must be “fully bracketed”

• A thread that acquires a lock 
must be the one to release it

See jasleendailydiary.blogspot.com/
2014/06/java-reentrant-lock.html

Overview of Java Synchronizer Classes

http://jasleendailydiary.blogspot.com/2014/06/java-reentrant-lock.html


11

• ReentrantReadWriteLock

• Improves performance when 
resources read more often 
than written

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/locks/ReentrantReadWriteLock.html

Overview of Java Synchronizer Classes

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html


12

• ReentrantReadWriteLock

• Improves performance when 
resources read more often 
than written

• Has many features

• Both a blessing & a curse..

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/locks/ReentrantReadWriteLock.html

Overview of Java Synchronizer Classes

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html


13

• StampedLock

• A readers-writer lock that’s 
more efficient than a 
ReentrantReadWriteLock

See docs.oracle.com/javase/8/docs/api/java/
util/concurrent/locks/StampedLock.html

Overview of Java Synchronizer Classes

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/StampedLock.html


14

• StampedLock

• A readers-writer lock that’s 
more efficient than a 
ReentrantReadWriteLock

• Supports “optimistic” reads

See docs.oracle.com/javase/8/docs/api/java/
util/concurrent/locks/StampedLock.html

Overview of Java Synchronizer Classes

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/StampedLock.html


15

• StampedLock

• A readers-writer lock that’s 
more efficient than a 
ReentrantReadWriteLock

• Supports “optimistic” reads

• Also supports “lock 
upgrading”

See docs.oracle.com/javase/8/docs/api/java/
util/concurrent/locks/StampedLock.html

Overview of Java Synchronizer Classes

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/StampedLock.html


16

• Semaphore

• Maintains permits that control 
thread access to limited # of 
shared resources

See docs.oracle.com/javase/8/docs/api/
java/util/concurrent/Semaphore.html

Overview of Java Synchronizer Classes

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Semaphore.html


17

• Semaphore

• Maintains permits that control 
thread access to limited # of 
shared resources

• Operations need not be 
fully bracketed..

Overview of Java Synchronizer Classes



18

• ConditionObject

• Allows a thread to wait until
some condition become true

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/
locks/AbstractQueuedSynchronizer.ConditionObject.html

Overview of Java Synchronizer Classes

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/AbstractQueuedSynchronizer.ConditionObject.html


19

• ConditionObject

• Allows a thread to wait until
some condition become true

• Always used in conjunction
with a ReentrantLock

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/
locks/AbstractQueuedSynchronizer.ConditionObject.html

Overview of Java Synchronizer Classes

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/AbstractQueuedSynchronizer.ConditionObject.html


20

• CountDownLatch

• Allows one or more threads to wait on the
completion of operations in other threads

See docs.oracle.com/javase/8/docs/api/
java/util/concurrent/CountDownLatch.html

Overview of Java Synchronizer Classes

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountDownLatch.html


21

• CyclicBarrier

• Allows a set of threads to all wait for each
other to reach a common barrier point

See docs.oracle.com/javase/8/docs/api/
java/util/concurrent/CyclicBarrier.html

Overview of Java Synchronizer Classes

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CyclicBarrier.html


22

• Phaser

• A synchronization 
barrier that’s more 
flexible & reusable
than CyclicBarrier
& CountDownLatch

See docs.oracle.com/javase/8/docs/
api/java/util/concurrent/Phaser.html

Overview of Java Synchronizer Classes

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Phaser.html


23

Java Synchronizer Class 
Usage Considerations



24

• Choosing between these synchronizers involve understanding various 
tradeoffs between performance & productivity

Performance Productivity

Java Synchronizer Class Usage Considerations



25

• Choosing between these synchronizers involve understanding various 
tradeoffs between performance & productivity

• Some synchronizers (or synchronizer
methods) have more overhead

• e.g., spin locks vs. sleep locks 
vs. hybrid locks

See en.wikipedia.org/wiki/Spinlock & docs.oracle.com/
javase/tutorial/essential/concurrency/guardmeth.html

Java Synchronizer Class Usage Considerations

http://en.wikipedia.org/wiki/Spinlock
http://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html


26

• Choosing between these synchronizers involve understanding various 
tradeoffs between performance & productivity

• Some synchronizers (or synchronizer
methods) have more overhead

• Some synchronizers are harder 
to program correctly than others

• e.g., risk of deadlock from non-
reentrant locking semantics

See en.wikipedia.org/wiki/Deadlock

Deadlocks are problematic in 
object-oriented frameworks due to 
callbacks & complex control flows

Java Synchronizer Class Usage Considerations

https://en.wikipedia.org/wiki/Deadlock


27

• Java synchronizers differ from Java built-in monitor objects

Java Synchronizer Class Usage Considerations



28

• Java synchronizers differ from Java built-in monitor objects, e.g.

• They are largely written in Java 
rather than C/C++

Java Synchronizer Class Usage Considerations



29
See mishadoff.com/blog/java-magic

-part-4-sun-dot-misc-dot-unsafe

• Java synchronizers differ from Java built-in monitor objects, e.g.

• They are largely written in Java 
rather than C/C++

• Some low-level methods 
written in native C/C++

• e.g., compareAndSwapInt(), 
park(), unpark(), etc.

Java Synchronizer Class Usage Considerations

http://mishadoff.com/blog/java-magic-part-4-sun-dot-misc-dot-unsafe


30

• Java synchronizers differ from Java built-in monitor objects, e.g.

• They are largely written in Java 
rather than C/C++

• They provide many more features
& have more powerful semantics

Java Synchronizer Class Usage Considerations



31

End of Overview of 
Java Synchronizer Classes


