Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Lesson

« Understand the capab
concurrent collections

=<interfaces==
Map<kys [F-——-----

_— = -

ilities of Java’s

— | HashMap<K,V=> {]—l

<<interfaces:
Queue<E>

PriorityQueue<E>

ConcurrentLinkedQueue<E:

LinkedList<E>

LinkedHashMap<K,V>

WeakHashMap<K,V=

IdentityHashMap<K, V=

EnumMap<K,¥:>

Hashtable<K, V>

<<interface=> -
ConcurrentMap<K V> I

ConcurrentHashMap<K,V=

<<interface==
BlockingQueue<E>

SynchronousQueue<E> - -

ArrayBlockingQueue<E> | —

LinkedBlockingQueue<E:>

PriorityBlockingQueue<E:>

DelayQueue<E>

2

Learning Objectives in this Lesson

« Understand the capabilities of Java’s
concurrent collections

« As well as how Java’s concurrent
collections overcome limitations with
Java’s synchronized collections

Overview of Java
Concurrent Collections

Overview of Java Concurrent Collections

 Java concurrent collections provide These are the concurrent-aware interfaces:
features that are optimized for the

needs of concurrent programs BlockingQueue
TransferQueue

BlockingDeque
ConcurrentMap
ConcurrentNavigableMap

Concurrent-aware classes include

LinkedBlockingQueue
ArrayBlockingQueue
PriorityBlockingQueue
DelayQueue
SynchronousQueue
LinkedBlockingDeque
LinkedTransferQueue
CopyOnWriteArrayList
CopyOnWriteArraySet
ConcurrentHashMap

See docs.oracle.com/javase/tutorial/essential/concurrency/collections.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/collections.html

Overview of Java Concurrent Collections

 Java concurrent collections provide
features that are optimized for the
needs of concurrent programs

A concurrent collection is thread-
safe, but is not governed by just
a single exclusion lock

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html

Overview of Java Concurrent Collections

 Java concurrent collections provide
features that are optimized for the
needs of concurrent programs

Thread A

Thread B

‘Everythlng

before the
uniock on M i
> lock M
* They avoid memory consistency l e =
. W everything } -
errors by defining a “happens- afterthe | ¥ |
before” relationship B i o
j=y
¥

This relationship is a guarantee that
memory writes by one specific statement
are visible to another specific statement

See en.wikipedia.org/wiki/Happened-before

https://en.wikipedia.org/wiki/Happened-before

Overview of Java Concurrent Collections

 Java concurrent collections provide
features that are optimized for the
needs of concurrent programs Producer

\
_>§ \\ offer()

N

* They avoid memory consistency Arragﬁéc:lzking
errors by defining a “happens-
before” relationship offer()
poll()
* e.g., between a thread that adds an put()
object to a collection with later thread(s) |[take()
that access or remove that object \
V' off
\ © er()

\

—>§ Consumer

See docs.oracle.com/javase/tutorial/essential/concurrency/memconsist.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/memconsist.html

Overview of Java Concurrent Collections

 Java concurrent collections provide

features that are optimized for the
needs of concurrent programs Producer
\
tak
_% \a e()
ArrayBlocking
Queue
offer()
. . poll()
* They enable needed blocking behavior put()
on queues that are empty or full take()
“\ take()

\

—>§ Consumer

See tutorials.jenkov.com/java-util-concurrent/blockinggueue.html

http://tutorials.jenkov.com/java-util-concurrent/blockingqueue.html

End of Java Concurrent
Collections: Introduction

10

Java Concurrent Collections:
ConcurrentHashiMap & BlockingQueue

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Lesson

« Recognize the capabilities of Java’s

ConcurrentHashMap & BlockingQueue

Interface BlockingQueue<E>

Type Parameters:

E - the type of elements held in this collection

All Superinterfaces:

Collection<E>, Iterable<E>, Queue<E>

All Known Subinterfaces:

BlockingDeque<E>, TransferQueue<E>

All Known Implementing Classes:
ArrayBlockingQueue, DelayQueue, LinkedBlockingDeque,

LinkedBlockingQueue, LinkedTransferQueue,
PriorityBlockingQueue, SynchronousQueue

public interface BlockingQueue<E>
extends Queue<E>

A Queue that additionally supports operations that wait for the queue
to become non-empty when retrieving an element, and wait for space
to become available in the queue when storing an element.

Class ConcurrentHashMap<K,V>

java.lang.Object
java.util.AbstractMap<K,V>
java.util.concurrent.ConcurrentHashMap<K,V>

Type Parameters:

K - the type of keys maintained by this map

V - the type of mapped values

All Implemented Interfaces:

Serializable, ConcurrentMap<K,V>, Map<K,V>

public class ConcurrentHashMap<K, V>
extends AbstractMap<K,V>
implements ConcurrentMap<K,V>, Serializable

A hash table supporting full concurrency of retrievals and high
expected concurrency for updates. This class obeys the same
functional specification as Hashtab'le, and includes versions of
methods corresponding to each method of Hashtable. However,
even though all operations are thread-safe, retrieval operations
do not entail locking, and there is not any support for locking
the entire table in a way that prevents all access. This class is
fully interoperable with Hashtable in programs that rely on its
thread safety but not on its synchronization details.

Retrieval operations (including get) generally do not block, so
may overlap with update operations (including put and remove).
Retrievals reflect the results of the most recently completed
update operations holding upon their onset. (More formally, an
update operation for a given key bears a happens-before
relation with any (non-null) retrieval for that key reporting the

13

Overview of Java
ConcurrentHashMap

14

Overview of Java ConcurrentHashMap

 Enables concurrent retrievals & adjustable i eams
expected concurrent updates via OO & ® ConcurrentHashMap<K,V>
functional prOgramming APIs @ ConcurrentHashMap

(
@ ConcurrentHashMap(int)

@ ConcurrentHashMap({Map<? extends K,? extends V=)
& ConcurrentHashMap(int float)

& ConcurrentHashMap(int float.int)

@ size()nt

@ isEmpty()-boolean

@ get(Object)

@ containsKey(Object):-boolean

@ containsValue(Object):boolean

@ put(K.V)

& putVal(K.V.boolean)

@ putAll{Map=? extends K.? extends V=)void
@ remove(Object)

& replaceMode(Object. V. Object)

@ clear():void

@ keySet()

@ values():Collection=V=

@ entrySet()-Set<Entry<kK V==

@ hashCode():int

@ remove(Object, Object):boolean

@ replace(K,V.V):boolean

@ replace(K,V)

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html

Overview of Java ConcurrentHashMap

« Optimized for multi-core CPUs

Building a better HashMap

How ConcurrentHashMap offers higher concurrency without
compromising thread safety

n Brian Goetz I ¥ in & ™ 4
Published on August 21, 2003

Content series:

+ This content is part of the series: Java theory and practice

In July's installment of Java theory and practice ("Concurrent collections
classes"), we reviewed scalability bottlenecks and discussed how to achieve
higher concurrency and throughput in shared data structures. Sometimes, the
best way to learn is to examine the work of the experts, so this month we're going
to look at the implementation of ConcurrentHashMap from Doug Lea's
util.concurrent package. A version of ConcurrentHashMap optimized for the
new Java Memory Model (JMM), which is being specified by JSR 133, will be
included in the java.util.concurrent package in JDK 1.5; the version in
util.concurrent has been audited for thread-safety under both the old and new

memory models.

See www.ibm.com/developerworks/library/j-jtp08223

http://www.ibm.com/developerworks/library/j-jtp08223

Overview of Java ConcurrentHashMap

. Optlmlzed for multi-core CPUs ConcurrentHashMap

(P s, s s, 3

It uses a group of locks, each Q) & & segment (@

guarding a subset of hash buckets | ' Locks -

0 1 2 15

These segment locks minimize contention 7 N\ 1
Hash Hash Hash Hash

\ Bucket Bucket Bucket Bucket)

See codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

https://codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

Overview of Java ConcurrentHashMap

« Optimized for multi-core CPUs ConcurrentHashMap

- It uses a group of locks, each AR Al

| | [
e ! Segment B

e,

0 2 15

guarding a subset of hash buckets | Locks
Has/h Halsh }ash Halsh
LBucket Bucket Bucket Bucket

There are common human known uses!

See codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

https://codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

Overview of Java ConcurrentHashMap

« Optimized for multi-core CPUs SynchronizedMap

)

o 1 2 15

« Conversely, a SynchronizedMap
only uses a single lock 7 \ \ |

Hash Hash Hash Hash
kBucket Bucket Bucket Bucket

|

This single lock may cause contention

See codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

https://codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

Overview of Java ConcurrentHashMap

« Optimized for multi-core CPUs SynchronizedMap

[
o 1 2 = 15

» Conversely, a SynchronizedMap

only uses a single lock 7 < I
’ Hash Hash Hash Hash
LBucket Bucket Bucket Bucket)

There are also common human
known uses of this approach!

See codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

https://codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

Overview of Java ConcurrentHashMap

» Provides “atomic check-then-act”

methods

computeIfAbsent(pCQ

computeIfAbsent (pC,)

/eg
Memoizer u

£ / T

computeIlfAbsent (pC,)

computeIlfAbsent (pC,)

/

Only one computation per key is
performed even if multiple threads call
computelfAbsent() using the same key

See dig.cs.illinois.edu/papers/checkThenAct.pdf

http://dig.cs.illinois.edu/papers/checkThenAct.pdf

Overview of Java ConcurrentHashMap

» Provides “atomic check-then-act”
methods, e.q.

« If key isn't already associated w/a
value, compute its value using the
given function & enter it into map

Instead of

V value = map.get (key) ;
if (value == null) {

value =
mappingFunc. apply (key) ;
if (value '= null)

map .put (key, value);
}

return value;

use

return map.computelfAbsent
(key, k -> new Value(f(k)));

See docs.oracle.com/javase/8/docs/api/java/util/

concurrent/ConcurrentHashMap.html#computelfAbsent

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html#computeIfAbsent-K-java.util.function.Function-

Overview of Java ConcurrentHashMap

* Provides “atomic check-then-act”
methods, e.q.

« If a key isn't already associated w/a
value, associate it with the value

Instead of

V value = map.get (key) ;
if (value == null)

return map.put(key, value);
else

return value;

use

return map.putlfAbsent
(key, wvalue);

See docs.oracle.com/javase/8/docs/api/java/util/

concurrent/ConcurrentHashMap.html#putIfAbsent

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html#putIfAbsent-K-V-

Overview of Java ConcurrentHashMap

 Provides “atomic check-then-act” Instead of
methods, e.q.

if (map.containsKey (key))
return map.put(key, value);
else
return null;

use

« Replaces entry for a key only if

return map.replace (key, wvalue);
currently mapped to some value P.2eP Y

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/ConcurrentHashMap.html#replace

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html#replace-K-V-

Overview of Java ConcurrentHashMap

 Provides “atomic check-then-act” Instead of
methods, e.q.
if (map.containsKey (key) &&
Objects.equals (map.get (key) ,
oldvValue)) {
map .put (key, newValue) ;
return true;
} else
return false;

use
« Replaces entry for a key only

if currently mapped to given value return map.replace (key,
oldValue,

newValue) ;

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/ConcurrentHashMap.html#replace

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html#replace-K-V-V-

Overview of Java
BlockingQueue

26

Overview of Java BlockingQueue

« A Queue supporting operations can wait for the queue to become non-empty
when retrieving an element & wait for space to become available in queue
when storing an element

« Interface » « Interface » « Interface » ArrayBlockingQueue
Collection Iterable Queue
T A A
DelayQueue
« Interface » LinkedBlockingDeque
TransferQueue i
v W v
« Interface » > «Interface» 4. ... LinkedBlockingQueue
BlockingDeque BlockingQueue
AAA
2 LinkedTransferQueue
- . SynchronousQueue

— PriorityBlockingQueue

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html

Overview of Java BlockingQueue

« A Queue supporting operations can wait for the queue to become non-empty
when retrieving an element & wait for space to become available in queue
when storing an element
* Clients can block or timeout Thread 1 Thread 2

when adding to a full queue BlockingQueue w
or retrieving from an empty queue

Put

28

Overview of Java BlockingQueue

« A Queue supporting operations can wait for the queue to become non-empty
when retrieving an element & wait for space to become available in queue

when storing an element

Consumer Producer
BlockingQueue implementati B \ / ~Z
 BlockingQueue implementations use i

Java ReentrantLock & ConditionObjects take put()

ArrayBlocking

Queue
put()
take()

2

uses ,

ConditionVariable

Q uses

await()
signal()
signalAll()

uses

Lock

lock()
unlock()

See earlier lessons on “Java ReentrantLocK” & “Java ConditionObject’

End of Java Concurrent
Collections: ConcurrentHash
Map & BlockingQueue

30

