
Java Concurrent Collections:

Introduction

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Lesson
• Understand the capabilities of Java’s

concurrent collections

3

Learning Objectives in this Lesson
• Understand the capabilities of Java’s

concurrent collections

• As well as how Java’s concurrent
collections overcome limitations with
Java’s synchronized collections

4

Overview of Java
Concurrent Collections

5

These are the concurrent-aware interfaces:

BlockingQueue

TransferQueue

BlockingDeque

ConcurrentMap

ConcurrentNavigableMap

Concurrent-aware classes include

LinkedBlockingQueue

ArrayBlockingQueue

PriorityBlockingQueue

DelayQueue

SynchronousQueue

LinkedBlockingDeque

LinkedTransferQueue

CopyOnWriteArrayList

CopyOnWriteArraySet

ConcurrentHashMap

See docs.oracle.com/javase/tutorial/essential/concurrency/collections.html

Overview of Java Concurrent Collections
• Java concurrent collections provide

features that are optimized for the
needs of concurrent programs

https://docs.oracle.com/javase/tutorial/essential/concurrency/collections.html

6See docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html

Overview of Java Concurrent Collections
• Java concurrent collections provide

features that are optimized for the
needs of concurrent programs

• A concurrent collection is thread-
safe, but is not governed by just
a single exclusion lock

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html

7

Overview of Java Concurrent Collections
• Java concurrent collections provide

features that are optimized for the
needs of concurrent programs

• A concurrent collection is thread-
safe, but is not governed by just
a single exclusion lock

• They avoid memory consistency
errors by defining a “happens-
before” relationship

This relationship is a guarantee that
memory writes by one specific statement
are visible to another specific statement

See en.wikipedia.org/wiki/Happened-before

https://en.wikipedia.org/wiki/Happened-before

8See docs.oracle.com/javase/tutorial/essential/concurrency/memconsist.html

Overview of Java Concurrent Collections
• Java concurrent collections provide

features that are optimized for the
needs of concurrent programs

• A concurrent collection is thread-
safe, but is not governed by just
a single exclusion lock

• They avoid memory consistency
errors by defining a “happens-
before” relationship

• e.g., between a thread that adds an
object to a collection with later thread(s)
that access or remove that object

offer()

offer()

ArrayBlocking
Queue

offer()
poll()
put()
take()

Producer

Consumer

https://docs.oracle.com/javase/tutorial/essential/concurrency/memconsist.html

9

Overview of Java Concurrent Collections
• Java concurrent collections provide

features that are optimized for the
needs of concurrent programs

• A concurrent collection is thread-
safe, but is not governed by just
a single exclusion lock

• They avoid memory consistency
errors by defining a “happens-
before” relationship

• They enable needed blocking behavior
on queues that are empty or full

take()

Producer

take()

ArrayBlocking
Queue

offer()
poll()
put()
take()

Consumer

See tutorials.jenkov.com/java-util-concurrent/blockingqueue.html

http://tutorials.jenkov.com/java-util-concurrent/blockingqueue.html

10

End of Java Concurrent
Collections: Introduction

Java Concurrent Collections:

ConcurrentHashMap & BlockingQueue

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

13

Learning Objectives in this Lesson
• Understand the capabilities of Java’s

concurrent collections

• Recognize the capabilities of Java’s
ConcurrentHashMap & BlockingQueue

14

Overview of Java
ConcurrentHashMap

15

Overview of Java ConcurrentHashMap
• Enables concurrent retrievals & adjustable

expected concurrent updates via OO &
functional programming APIs

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html

16

• Optimized for multi-core CPUs

Overview of Java ConcurrentHashMap

See www.ibm.com/developerworks/library/j-jtp08223

http://www.ibm.com/developerworks/library/j-jtp08223

17

Overview of Java ConcurrentHashMap

…
0 1 2 15

Hash
Bucket

Hash
Bucket

Hash
Bucket

Hash
Bucket

Segment
Locks

ConcurrentHashMap

These segment locks minimize contention

See codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

• Optimized for multi-core CPUs

• It uses a group of locks, each
guarding a subset of hash buckets

https://codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

18

Overview of Java ConcurrentHashMap

…
0 1 2 15

Hash
Bucket

Hash
Bucket

Hash
Bucket

Hash
Bucket

Segment
Locks

ConcurrentHashMap

There are common human known uses!

See codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

• Optimized for multi-core CPUs

• It uses a group of locks, each
guarding a subset of hash buckets

https://codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

19

Overview of Java ConcurrentHashMap

…
0 1 2 15

Hash
Bucket

Hash
Bucket

Hash
Bucket

Hash
Bucket

SynchronizedMap

See codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

This single lock may cause contention

• Optimized for multi-core CPUs

• It uses a group of locks, each
guarding a subset of hash buckets

• Conversely, a SynchronizedMap
only uses a single lock

https://codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

20

Overview of Java ConcurrentHashMap

…
0 1 2 15

Hash
Bucket

Hash
Bucket

Hash
Bucket

Hash
Bucket

SynchronizedMap

See codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

There are also common human
known uses of this approach!

• Optimized for multi-core CPUs

• It uses a group of locks, each
guarding a subset of hash buckets

• Conversely, a SynchronizedMap
only uses a single lock

https://codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

21

• Provides “atomic check-then-act”
methods

Overview of Java ConcurrentHashMap

See dig.cs.illinois.edu/papers/checkThenAct.pdf

Memoizer

computeIfAbsent(pC1)

computeIfAbsent(pC1)

computeIfAbsent(pC2)

computeIfAbsent(pC1)

Only one computation per key is
performed even if multiple threads call
computeIfAbsent() using the same key

http://dig.cs.illinois.edu/papers/checkThenAct.pdf

22

• Provides “atomic check-then-act”
methods, e.g.

• If key isn’t already associated w/a
value, compute its value using the
given function & enter it into map

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/ConcurrentHashMap.html#computeIfAbsent

Overview of Java ConcurrentHashMap
Instead of

V value = map.get(key);

if (value == null) {

value =

mappingFunc.apply(key);

if (value != null)

map.put(key, value);

}

return value;

use

return map.computeIfAbsent

(key, k -> new Value(f(k)));

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html#computeIfAbsent-K-java.util.function.Function-

23

• Provides “atomic check-then-act”
methods, e.g.

• If key isn’t already associated w/a
value, compute its value using the
given function & enter it into map

• If a key isn’t already associated w/a
value, associate it with the value

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/ConcurrentHashMap.html#putIfAbsent

Overview of Java ConcurrentHashMap
Instead of

V value = map.get(key);

if (value == null)

return map.put(key, value);

else

return value;

use

return map.putIfAbsent

(key, value);

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html#putIfAbsent-K-V-

24

• Provides “atomic check-then-act”
methods, e.g.

• If key isn’t already associated w/a
value, compute its value using the
given function & enter it into map

• If a key isn’t already associated w/a
value, associate it with the value

• Replaces entry for a key only if
currently mapped to some value

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/ConcurrentHashMap.html#replace

Overview of Java ConcurrentHashMap
Instead of

if (map.containsKey(key))

return map.put(key, value);

else

return null;

use

return map.replace(key, value);

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html#replace-K-V-

25

• Provides “atomic check-then-act”
methods, e.g.

• If key isn’t already associated w/a
value, compute its value using the
given function & enter it into map

• If a key isn’t already associated w/a
value, associate it with the value

• Replaces entry for a key only if
currently mapped to some value

• Replaces entry for a key only
if currently mapped to given value

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/ConcurrentHashMap.html#replace

Overview of Java ConcurrentHashMap
Instead of

if (map.containsKey(key) &&

Objects.equals(map.get(key),

oldValue)) {

map.put(key, newValue);

return true;

} else

return false;

use

return map.replace(key,

oldValue,

newValue);

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html#replace-K-V-V-

26

Overview of Java
BlockingQueue

27

Overview of Java BlockingQueue
• A Queue supporting operations can wait for the queue to become non-empty

when retrieving an element & wait for space to become available in queue
when storing an element

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html

28

Overview of Java BlockingQueue
• A Queue supporting operations can wait for the queue to become non-empty

when retrieving an element & wait for space to become available in queue
when storing an element
• Clients can block or timeout

when adding to a full queue
or retrieving from an empty queue

29

Overview of Java BlockingQueue
• A Queue supporting operations can wait for the queue to become non-empty

when retrieving an element & wait for space to become available in queue
when storing an element
• Clients can block or timeout

when adding to a full queue
or retrieving from an empty queue

• BlockingQueue implementations use
Java ReentrantLock & ConditionObjects

usesuses
2

ArrayBlocking

Queue

put()
take()

Lock

lock()
unlock()

uses

take() put()

Consumer Producer

ConditionVariable

await()
signal()
signalAll()

See earlier lessons on “Java ReentrantLock” & “Java ConditionObject”

30

End of Java Concurrent
Collections: ConcurrentHash

Map & BlockingQueue

