
Overview of Java Atomic

Operations & Variables

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Lesson
• Recognize Java programming language

& library features that provide atomic
operations & variables

3

Overview of
Atomic Actions

4

Overview of Atomic Actions
• Atomic actions ensure that changes

to a field are always consistent &
visible to other threads

See docs.oracle.com/javase/tutorial/
essential/concurrency/atomic.html

http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

5

• Atomic actions ensure that changes
to a field are always consistent &
visible to other threads

• An atomic action is one that
effectively happens all at once
or it doesn’t happen at all

Overview of Atomic Actions

See en.wikipedia.org/wiki/Linearizability

http://en.wikipedia.org/wiki/Linearizability

6

• Atomic actions ensure that changes
to a field are always consistent &
visible to other threads

• An atomic action is one that
effectively happens all at once
or it doesn’t happen at all

• i.e., it can’t stop in the middle
& leave an inconsistent state

Overview of Atomic Actions

7

• Atomic actions ensure that changes
to a field are always consistent &
visible to other threads

• An atomic action is one that
effectively happens all at once
or it doesn’t happen at all

• Any side effects of an atomic
action aren’t visible until the
action completes

Overview of Atomic Actions

8

• Three key concepts are associated
with atomic actions in Java

See jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

Overview of Java Atomic Actions

http://jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

9

• Three key concepts are associated
with atomic actions in Java

• Atomicity deals with which (sets
of) actions have indivisible effects

class NonAtomicOps {

long mCounter = 0;

void increment() { // Thread T2
for (;;) {

mCounter++;

}

}

void decrement() { // Thread T1
for (;;) {

mCounter--;

}

}

...

}

Overview of Java Atomic Actions

The behavior of running increment() & decrement()
concurrently is undefined & not predictable..

10

• Three key concepts are associated
with atomic actions in Java

• Atomicity deals with which (sets
of) actions have indivisible effects

• Visibility determines when one
thread can the effects of another

class LoopMayNeverEnd {

boolean mDone = false;

void work() {

// Thread T2 read

while (!mDone) {

// do work

}

}

void stopWork() {

// Thread T1 write

mDone = true;

}

...

}

Overview of Java Atomic Actions

It’s possible that thread T2 will never stop
even after Thread T1 sets mDone to true..

11

• Three key concepts are associated
with atomic actions in Java

• Atomicity deals with which (sets
of) actions have indivisible effects

• Visibility determines when one
thread can the effects of another

• Ordering determines when actions
in one thread occur out of order
with respect to another thread

class BadlyOrdered {

boolean a = false;

boolean b = false;

void method1() { // Thread T1
a = true;

b = true;

}

boolean method2() { // Thread T2
boolean r1 = b; // sees true

boolean r2 = a; // sees false

boolean r3 = a; // sees true

return (r1 && !r2) && r3;

// returns true

}

}

Overview of Java Atomic Actions

The order that fields a & b appear in thread T2 may
differ from the order they were set in Thread T1!

12

Overview of Java
Atomic Variables

13

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomic actions

14

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomic actions, e.g.

• Volatile variables

• Ensure a variable is read
from & written to main
memory & not cached

See en.wikipedia.org/wiki/Volatile_variable#In_Java

Main Memory

42 13

nv v

Cache 1

42 13

nv v

Cache 2

42 13

nv v

Cache n

42 13

nv v

ThreadnThread1 Thread2

http://en.wikipedia.org/wiki/Volatile_variable#In_Java

15

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomic actions, e.g.

• Volatile variables

• Ensure a variable is read
from & written to main
memory & not cached

• e.g., sharing a field
between two threads

See dzone.com/articles/java-volatile-keyword-0

class PingPongTest {

private volatile int val = 0;

private int MAX = ...;

public void playPingPong() {

new Thread(() -> { // Listener.

for (int lv = val; lv < MAX;)

if (lv != val) {

print("pong(" + val + ")");

lv = val;

}}).start();

new Thread(() -> { // Changer.

for (int lv = val; val < MAX;) {

val = ++lv;

print("ping(" + lv + ")"));

... Thread.sleep(500); ...

}}).start();

...

This program alternates
printing “ping” & “pong”

between two threads

https://dzone.com/articles/java-volatile-keyword-0

16

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomic actions, e.g.

• Volatile variables

• Ensure a variable is read
from & written to main
memory & not cached

• e.g., sharing a field
between two threads

See dzone.com/articles/java-volatile-keyword-0

class PingPongTest {

private volatile int val = 0;

private int MAX = ...;

public void playPingPong() {

new Thread(() -> { // Listener.

for (int lv = val; lv < MAX;)

if (lv != val) {

print("pong(" + val + ")");

lv = val;

}}).start();

new Thread(() -> { // Changer.

for (int lv = val; val < MAX;) {

val = ++lv;

print("ping(" + lv + ")"));

... Thread.sleep(500); ...

}}).start();

...

If volatile is omitted from the
definition of 'val' then the

program doesn’t terminate..

https://dzone.com/articles/java-volatile-keyword-0

17

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomic actions, e.g.

• Volatile variables

• Ensure a variable is read
from & written to main
memory & not cached

• e.g., sharing a field
between two threads

See dzone.com/articles/java-volatile-keyword-0

class PingPongTest {

private volatile int val = 0;

private int MAX = ...;

public void playPingPong() {

new Thread(() -> { // Listener.

for (int lv = val; lv < MAX;)

if (lv != val) {

print("pong(" + val + ")");

lv = val;

}}).start();

new Thread(() -> { // Changer.

for (int lv = val; val < MAX;) {

val = ++lv;

print("ping(" + lv + ")"));

... Thread.sleep(500); ...

}}).start();

...

These reads from
‘val’ are atomic

https://dzone.com/articles/java-volatile-keyword-0

18

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomic actions, e.g.

• Volatile variables

• Ensure a variable is read
from & written to main
memory & not cached

• e.g., sharing a field
between two threads

See dzone.com/articles/java-volatile-keyword-0

class PingPongTest {

private volatile int val = 0;

private int MAX = ...;

public void playPingPong() {

new Thread(() -> { // Listener.

for (int lv = val; lv < MAX;)

if (lv != val) {

print("pong(" + val + ")");

lv = val;

}}).start();

new Thread(() -> { // Changer.

for (int lv = val; val < MAX;) {

val = ++lv;

print("ping(" + lv + ")"));

... Thread.sleep(500); ...

}}).start();

...

This write to ‘val’ is atomic

https://dzone.com/articles/java-volatile-keyword-0

19

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomic actions, e.g.

• Volatile variables

• Low-level atomic operations
in the Java Unsafe class

See mishadoff.com/blog/java-magic-part-4-sun-dot-misc-dot-unsafe

http://mishadoff.com/blog/java-magic-part-4-sun-dot-misc-dot-unsafe

20

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomic actions, e.g.

• Volatile variables

• Low-level atomic operations
in the Java Unsafe class

• It’s designed for use only by
the Java Class Library, not by
normal programs

See www.baeldung.com/java-unsafe

http://www.baeldung.com/java-unsafe

21

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomic actions, e.g.

• Volatile variables

• Low-level atomic operations
in the Java Unsafe class

• It’s designed for use only by
the Java Class Library, not by
normal programs

• Its “compare & swap” (CAS)
methods are quite useful

int compareAndSwapInt

(Object o, long offset,

int expected, int updated) {

START_ATOMIC();

int *base = (int *) o;

int oldValue = base[offset];

if (oldValue == expected)

base[offset] = updated;

END_ATOMIC();

return oldValue;

}

See en.wikipedia.org/wiki/Compare-and-swap

https://en.wikipedia.org/wiki/Compare-and-swap

22

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomic actions, e.g.

• Volatile variables

• Low-level atomic operations
in the Java Unsafe class

• It’s designed for use only by
the Java Class Library, not by
normal programs

• Its “compare & swap” (CAS)
methods are quite useful

int compareAndSwapInt

(Object o, long offset,

int expected, int updated) {

START_ATOMIC();

int *base = (int *) o;

int oldValue = base[offset];

if (oldValue == expected)

base[offset] = updated;

END_ATOMIC();

return oldValue;

}

See en.wikipedia.org/wiki/Compare-and-swap

This C-like pseudo-code compares
contents of memory with a given

value & modifies contents to a new
given value iff they are the same

https://en.wikipedia.org/wiki/Compare-and-swap

23

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomic actions, e.g.

• Volatile variables

• Low-level atomic operations
in the Java Unsafe class

• It’s designed for use only by
the Java Class Library, not by
normal programs

• Its “compare & swap” (CAS)
methods are quite useful

• CAS methods can be used
to implement efficient “lock
free” algorithms

void lock(Object o, long offset){

while (compareAndSwapInt

(o, offset, 0, 1) > 0);

}

void unlock(Object o, long offset){

START_ATOMIC();

int *base (int *) o;

base[offset] = 0;

END_ATOMIC();

}

See en.wikipedia.org/wiki/Non-blocking_algorithm

http://en.wikipedia.org/wiki/Non-blocking_algorithm

24

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomic actions, e.g.

• Volatile variables

• Low-level atomic operations
in the Java Unsafe class

• It’s designed for use only by
the Java Class Library, not by
normal programs

• Its “compare & swap” (CAS)
methods are quite useful

• CAS methods can be used
to implement efficient “lock
free” algorithms

void lock(Object o, long offset){

while (compareAndSwapInt

(o, offset, 0, 1) > 0);

}

void unlock(Object o, long offset){

START_ATOMIC();

int *base (int *) o;

base[offset] = 0;

END_ATOMIC();

}

Implements a simple
“mutex” spin-lock

See en.wikipedia.org/wiki/Spinlock

https://en.wikipedia.org/wiki/Spinlock

25

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomic actions, e.g.

• Volatile variables

• Low-level atomic operations
in the Java Unsafe class

• It’s designed for use only by
the Java Class Library, not by
normal programs

• Its “compare & swap” (CAS)
methods are quite useful

• CAS methods can be used
to implement efficient “lock
free” algorithms

• Synchronizers in the Java Class
Library use CAS methods extensively

See www.youtube.com/watch?v=sq0MX3fHkro

http://www.youtube.com/watch?v=sq0MX3fHkro

26

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomic actions, e.g.

• Volatile variables

• Low-level atomic operations
in the Java Unsafe class

• Atomic classes

• Use Java Unsafe internally
to implement “lock-free”
algorithms

public class AtomicBoolean ... {

private static final Unsafe unsafe

= ...;

private static final long

valueOffset;

private volatile int value;

static { ...

valueOffset = unsafe

.objectFieldOffset

(AtomicBoolean.class.

getDeclaredField("value"));

...

}

...

See docs.oracle.com/javase/8/docs/api/java/
util/concurrent/atomic/AtomicBoolean.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicBoolean.html

27

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomic actions, e.g.

• Volatile variables

• Low-level atomic operations
in the Java Unsafe class

• Atomic classes

• Use Java Unsafe internally
to implement “lock-free”
algorithms

public class AtomicBoolean ... {

private static final Unsafe unsafe

= ...;

private static final long

valueOffset;

private volatile int value;

static { ...

valueOffset = unsafe

.objectFieldOffset

(AtomicBoolean.class.

getDeclaredField("value"));

...

}

...

See www.docjar.com/docs/api/sun/misc/Unsafe.html#objectFieldOffset

Compute the offset of
the ‘value’ field from the
beginning of the object

http://www.docjar.com/docs/api/sun/misc/Unsafe.html#objectFieldOffset

28

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomic actions, e.g.

• Volatile variables

• Low-level atomic operations
in the Java Unsafe class

• Atomic classes

• Use Java Unsafe internally
to implement “lock-free”
algorithms

public class AtomicBoolean ... {

private static final Unsafe unsafe

= ...;

private static final long

valueOffset;

private volatile int value;

static { ...

valueOffset = unsafe

.objectFieldOffset

(AtomicBoolean.class.

getDeclaredField("value"));

...

}

...

See docs.oracle.com/javase/tutorial/reflect

Uses the Java reflection API

https://docs.oracle.com/javase/tutorial/reflect

29

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomic actions, e.g.

• Volatile variables

• Low-level atomic operations
in the Java Unsafe class

• Atomic classes

• Use Java Unsafe internally
to implement “lock-free”
algorithms

public class AtomicBoolean ... {

private static final Unsafe unsafe

= ...;

private static final long

valueOffset;

private volatile int value;

static { ...

valueOffset = unsafe

.objectFieldOffset

(AtomicBoolean.class.

getDeclaredField("value"));

...

}

...

Note the “value”
field is volatile

See en.wikipedia.org/wiki/Volatile_variable#In_Java

http://en.wikipedia.org/wiki/Volatile_variable#In_Java

30

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomic actions, e.g.

• Volatile variables

• Low-level atomic operations
in the Java Unsafe class

• Atomic classes

• Use Java Unsafe internally
to implement “lock-free”
algorithms

• compareAndSet() uses Unsafe
.compareAndSwapInt()

public class AtomicBoolean ... {

...

public final boolean compareAndSet

(boolean expected,

boolean updated){

int e = expected ? 1 : 0;

int u = updated ? 1 : 0;

return unsafe.compareAndSwapInt

(this, valueOffset, e, u);

}

...

See www.docjar.com/docs/api/sun/misc/Unsafe.html#compareAndSwapInt

http://www.docjar.com/docs/api/sun/misc/Unsafe.html#compareAndSwapInt

31

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomic actions, e.g.

• Volatile variables

• Low-level atomic operations
in the Java Unsafe class

• Atomic classes

• Use Java Unsafe internally
to implement “lock-free”
algorithms

• compareAndSet() uses Unsafe
.compareAndSwapInt() Atomically updated field at

valueOffset to 'updated' iff it’s
currently holding 'expected'

public class AtomicBoolean ... {

...

public final boolean compareAndSet

(boolean expected,

boolean updated){

int e = expected ? 1 : 0;

int u = updated ? 1 : 0;

return unsafe.compareAndSwapInt

(this, valueOffset, e, u);

}

...

See www.docjar.com/docs/api/sun/misc/Unsafe.html#compareAndSwapInt

http://www.docjar.com/docs/api/sun/misc/Unsafe.html#compareAndSwapInt

32

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomic actions, e.g.

• Volatile variables

• Low-level atomic operations
in the Java Unsafe class

• Atomic classes

• Use Java Unsafe internally
to implement “lock-free”
algorithms

• compareAndSet() uses Unsafe
.compareAndSwapInt() Returns true if successful, whereas

false indicates that the actual value
was not equal to the expected value

public class AtomicBoolean ... {

...

public final boolean compareAndSet

(boolean expected,

boolean updated){

int e = expected ? 1 : 0;

int u = updated ? 1 : 0;

return unsafe.compareAndSwapInt

(this, valueOffset, e, u);

}

...

See www.docjar.com/docs/api/sun/misc/Unsafe.html#compareAndSwapInt

http://www.docjar.com/docs/api/sun/misc/Unsafe.html#compareAndSwapInt

33

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomic actions, e.g.

• Volatile variables

• Low-level atomic operations
in the Java Unsafe class

• Atomic classes

• Use Java Unsafe internally
to implement “lock-free”
algorithms

• compareAndSet() uses Unsafe
.compareAndSwapInt()

public class AtomicBoolean ... {

...

public final boolean compareAndSet

(boolean expected,

boolean updated){

int e = expected ? 1 : 0;

int u = updated ? 1 : 0;

return unsafe.compareAndSwapInt

(this, valueOffset,

e, u);

}

public final void set(boolean

newValue) {

value = newValue ? 1 : 0;

}

...

Unconditionally sets ‘value’ to given newValue
via an atomic write on the volatile ‘value’

34

End of Overview of Java
Atomic Operations &

Variables

