Overview of Java Atomic
Operations & Variahles

Douglas C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in th|s Lesson

» Recognize Java programming language
& library features that provide atomic
operations & variables

Overview of
Atomic Actions

Overview of Atomic Actions

« Atomic actions ensure that changes
to a field are always consistent &
visible to other threads In programming, an atomic action is one that

effectively happens all at once. An atomic action
cannot stop in the middle: it either happens
completely, or it doesn't happen at all. No side
effects of an atomic action are visible until the action

is complete.

Atomic Access

We have already seen that an increment expression,
such as c++, does not describe an atomic action.
Even very simple expressions can define complex
actions that can decompose into other actions.
However, there are actions you can specify that are
atomic:

+ Reads and writes are atomic for reference
variables and for most primitive variables (all
types except long and double).

+ Reads and writes are atomic for all variables
declared volatile (including 1ong and
double variables).

See docs.oracle.com/javase/tutorial/
essential/concurrency/atomic.html

http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

Overview of Atomlc Actlons

Atomic actions ensure that changes
to a field are always consistent &
visible to other threads

* An gtomic action is one that
effectively happens all at once
or it doesn’t happen at all

See en.wikipedia.org/wiki/Linearizability

http://en.wikipedia.org/wiki/Linearizability

Overview of Atomlc Actlons

« Atomic actions ensure that changes
to a field are always consistent &
visible to other threads

* An gtomic action is one that
effectively happens all at once
or it doesn’t happen at all

* i.e.,, it can't stop in the middle
& leave an inconsistent state

Overview of Atomic Actions

Atomic actions ensure that changes
to a field are always consistent &
visible to other threads

ALL &

T HIN Y

 Any side effects of an atomic
action aren't visible until the

action completes ' N

B

Overview of Java Atomic Actions

» Three key concepts are associated
with atomic actions in Java

See jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

http://jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

Overview of Java Atomic Actions

» Three key concepts are associated class NonAtomicOps {

with atomic actions in Java long mCounter = 0;
« Atomicity deals with which (sets void increment() { // Thread T,
of) actions have indivisible effects for (::) {

mCounter++;

}
}

void decrement() { // Thread T,
for (;;) {
mCounter—-;

The behavior of running increment() & decrement()
concurrently is undefined & not predictable..

Overview of Java Atomic Actions

» Three key concepts are associated
with atomic actions in Java

 Visibility determines when one
thread can the effects of another

class LoopMayNeverEnd ({

boolean mDone = false;

void work () {
// Thread T, read
while (!'mDone) {
// do work

}
}

void stopWork () {
// Thread T, write
mDone = true;

}

It's possible that thread T, will never stop
even after Thread T, sets mDone to true..

Overview of Java Atomic Actions

» Three key concepts are associated class BadlyOrdered ({

with atomic actions in Java boolean a = false;
boolean b = false;

void methodl () { // Thread T,
a = true;
b = true;

) . : }
» Ordering determines when actions
in one thread occur out of order boolean method2() { // Thread T,
with I‘eSpect to another thread boolean rl = b; // sees true
boolean r2 = a; // sees false
boolean r3 = a; // sees true

return (rl && 'r2) && r3;
// returns true

The order that fields a & b appear in thread T, may
differ from the order they were set in Thread T,!

Overview of Java
Atomic Variables

12

Overview of Java Atomic Operations & Variables

 Java supports several types
of atomic actions

13

Overview of Java Atomic Operations & Variables

« Java supports several types
of atomic actions, e.qg.

« lolatile variables

e Ensure a variable is read
from & written to main
memory & not cached Cache 1

Main Memory

Cache 2

See en.wikipedia.org/wiki/Volatile variable#In Java

http://en.wikipedia.org/wiki/Volatile_variable#In_Java

Overview of Java Atomic Operations & Variables

 Java supports several types class PingPongTest ({
of atomic actions, e.g. private volatile int val = 0;
private int MAX = ...;

» Volatile variables

» Ensure a variable is read public void playPingPong() {
from & written to main new Thread(() -> { // Listener.
memory & not cached for (int 1lv = val; 1lv < MAX;)

e.g., sharing a field if (v 1= val) {
i 9. r'nt(" on (u + al + u)n);
between two threads pes pong v

new Thread(() -> { // Changer.

lv = val;
}}) .start () ;
; for (int 1lv = wval; val < MAX;) {
/ Print("ping(" + lV + ") ")) ;

This program alternates - Thread.sleep(500);

,Dr/nt/ng ';D/Hg”& ':Dong” }}) .start();
between two threads

See dzone.com/articles/java-volatile-keyword-0

https://dzone.com/articles/java-volatile-keyword-0

Overview of Java Atomic Operations & Variables

 Java supports several types class PingPongTest ({
of atomic actions, e.g. private volatile int val = 0;

. . rivate/int MAX = ...;
» lolatile variables P

» Ensure a variable is read publ¥c void playPingPong() {
from & written to main néw Thread(() -> { // Listener.
memory & not cached for (int 1lv = val; 1lv < MAX;)

if (lv !'= val
* e.g., sharing a field i (v val) {

print ("pong(" + val + ")");
between two threads v = val:

}}) .start () ;

If volatile is omitted from the ne"t’f Thr‘_*a:(l(-) - {l{ / Clllaig;;-(|
definition of 'val' then the or (int lv = val; va 7o) A

) l = +4+1v;
rogram doesn’t terminate.. ve ’
prog print ("ping(" + 1lv + ")"));
... Thread.sleep(500) ;
}}) .start();

See dzone.com/articles/java-volatile-keyword-0

https://dzone.com/articles/java-volatile-keyword-0

Overview of Java Atomic Operations & Variables

 Java supports several types class PingPongTest ({
of atomic actions, e.g. private volatile int val = 0;

private int MAX = ...;

» lolatile variables
 Ensure a variable is read public void playPingPong() {

from & written to main new Thread(() -> { // Listener.

memory & not cached for (int 1lv = wval; lv < MAX;)
. . if (lv '= val) \{

* e.g., sharing a field print ("pong ("\ + val + ")");

between two threads v = val:

}}) .start() ;'\ These reads from
val’ are atomic

new Thread(() -> { // Changer.
for (int 1lv = wval; val < MAX;) {
val = ++1v;
print ("ping(" + 1lv + ")"));
... Thread.sleep(500) ;
}}) .start();

See dzone.com/articles/java-volatile-keyword-0

https://dzone.com/articles/java-volatile-keyword-0

Overview of Java Atomic Operations & Variables

 Java supports several types class PingPongTest ({
of atomic actions, e.g. private volatile int val = 0;

private int MAX = ...;

» lolatile variables
 Ensure a variable is read public void playPingPong() {

from & written to main new Thread(() -> { // Listener.

memory & not cached for (int 1lv = val; 1lv < MAX;)
: : if (lv '= val) {

* e.g., sharing a field print ("pong (" + val + ")");

between two threads v = val:
}}) .start();

new Thread(() -> { // Changer.
for (int 1lv = wval; val < MAX;) {

val = ++1lv;
/Prlnt("plng(" + 1lv + ")"));
This write to 'val’ is atomic - - Thread.sleep(300); ...
}}) .start();

See dzone.com/articles/java-volatile-keyword-0

https://dzone.com/articles/java-volatile-keyword-0

Overview of Java Atomic Operations & Variables

« Java supports several types Concurrency
Of atomlc aCtlonsl e'g . And few words about concurrency with Unsafe. compareAndSwap methods

are atomic and can be used to implement high-performance lock-free data

structures.

hd LOW’/EVE/ atoml.c Operatl.ons Fo.r example, consider the problem to increment value in the shared object
in the Java Unsafe class weneloteftheads

First we define simple interface Counter:

interface Counter {
vold increment();
long getCounter();

}

Then we define worker thread Counterclient, that uses Counter:

class CounterClient implements Runnable {
private Counter c;

private int num;

public CounterClient(Counter c, int num) {

this.c = ¢;
this.num = num;
}
@override

public void run() {
for (int i = @; 1 < num; i++) {
c.increment();

3

See mishadoff.com/blog/java-magic-part-4-sun-dot-misc-dot-unsafe

http://mishadoff.com/blog/java-magic-part-4-sun-dot-misc-dot-unsafe

Overview of Java Atomic Operations & Variables

 Java supports several types
of atomic actions, e.g.

« Low-level atomic operations
in the Java Unsafe class

« It's designed for use only by
the Java Class Library, not by
normal programs

Concurrency

And few words about concurrency with Unsafe. compareAndSwap methods
are atomic and can be used to implement high-performance lock-free data

structures.

For example, consider the problem to increment value in the shared object

using lot of threads.

First we define simple interface Counter:

interface Counter {
vold increment();
long getCounter();

}

Then we define worker thread Counterclient, that uses Counter:

class CounterClient implements Runnable {
private Counter c;
private int num;

public CounterClient(Counter c, int num) {

this.c = ¢;
this.num = num
}
@override

public void run() {
for (int i = @; 1 < num; i++) {
c.increment();
}
}
b

See www.baeldung.com/java-unsafe

http://www.baeldung.com/java-unsafe

Overview of Java Atomic Operations & Variables

» Java supports several types int compareAndSwapInt

of atomic actions, e.g. (Object o, long offset,
int expected, int updated) {

START ATOMIC() ;

« Low-level atomic operations int *base = (int *) o;

in the Java Unsafe class int oldValue = base[offset];
if (oldvValue == expected)

base[offset] = updated;
END ATOMIC() ;
return oldValue;

* Its “compare & swap” (CAS)
methods are quite useful

 See en.wikipedia.org/wiki/Compare-and-swap

https://en.wikipedia.org/wiki/Compare-and-swap

Overview of Java Atomic Operations & Variables

» Java supports several types int compareAndSwapInt

of atomic actions, e.g. (Object o, long offset,
int expected, int updated) ({

START ATOMIC () ;

« Low-level atomic operations int *base = (int *) o;

in the Java Unsafe class int oldValue = base[offset];
if (oldvalue == expected)

base[offset] = updated;
END_ ATOMIC() ;
return oldValue;

* Its “compare & swap” (CAS) }

methods are quite useful

This C-like pseudo-code compares
contents of memory with a given
value & modifies contents to a new
given value iff they are the same

See en.wikipedia.org/wiki/Compare-and-swap

https://en.wikipedia.org/wiki/Compare-and-swap

Overview of Java Atomic Operations & Variables

 Java supports several types void lock(Object o, long offset) {

of atomic actions, e.g. while (cczmpar?;ndiwagln’lc) o)
o, offset, O, :

}

« Low-level atomic operations

in the Java Unsafe class void unlock (Object o, long offset) {
START ATOMIC() ;

int *base (int *) o;
base[offset] = 0;
END ATOMIC() ;

}

« CAS methods can be used
to implement efficient “lock
free” algorithms

See en.wikipedia.org/wiki/Non-blocking algorithm

http://en.wikipedia.org/wiki/Non-blocking_algorithm

Overview of Java Atomic Operations & Variables

 Java supports several types void lock(Object o, long offset) {

of atomic actions, e.g. while (cczmparilgndiwaglntl:) o)
o, offset, O, :

}

« Low-level atomic operations

in the Java Unsafe class void unlock (Object o, long offset) {
START ATOMIC() ;

int *base (int *) o;
base[offset] = 0;
END ATOMIC() ;

}

Implements a simple

« CAS methods can be used ! iy
mutex” spin-lock

to implement efficient “lock
free” algorithms

See en.wikipedia.org/wiki/Spinlock

https://en.wikipedia.org/wiki/Spinlock

Overview of Java Atomic Operations & Variables

 Java supports several types
of atomic actions, e.qg. %{2 EMERGING TECHNOLOGIES

« Low-level atomic operations
in the Java Unsafe class "Engineering Concurrent Library Components”

Doug Lea

Day 2 - April 3, 2013 - 1:30 PM - Salon C

phillyemergingtech.com

» Synchronizers in the Java Class
Library use CAS methods extensively

See www.youtube.com/watch?v=sqO0MX3fHkro

http://www.youtube.com/watch?v=sq0MX3fHkro

Overview of Java Atomic Operations & Variables

 Java supports several types public class AtomicBoolean ... {
of atomic actions, e.g. private static final Unsafe unsafe

private static final long
valueOffset;

« Atomic classes

_ private volatile int value;
« Use Java Unsafe internally

to implement “lock-free” static {
algorithms valueOffset = unsafe
.objectFieldOffset

(AtomicBoolean.class.
getDeclaredField("value")) ;

See docs.oracle.com/javase/8/docs/api/java/
util/concurrent/atomic/AtomicBoolean.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicBoolean.html

Overview of Java Atomic Operations & Variables

 Java supports several types public class AtomicBoolean ... {
of atomic actions, e.g. private static final Unsafe unsafe

private static final long

valueOffset;
« Atomic classes

_ private volatile int value;
« Use Java Unsafe internally

to implement “lock-free” static {
algorithms valueOffset = unsafe
.objectFieldOffset

(AtomicBoolean.class.
getDeclaredField("value")) ;

Compute the offset of
the ‘value’ field from the
beginning of the object

See www.docjar.com/docs/api/sun/misc/Unsafe.html#objectFieldOffset

http://www.docjar.com/docs/api/sun/misc/Unsafe.html#objectFieldOffset

Overview of Java Atomic Operations & Variables

 Java supports several types public class AtomicBoolean ... {
of atomic actions, e.g. private static final Unsafe unsafe

private static final long
valueOffset;

« Atomic classes

_ private volatile int value;
« Use Java Unsafe internally

to implement “lock-free” static {
algorithms valueOffset = unsafe
.objectFieldOffset

(AtomicBoolean.class.
getDeclaredField("value")) ;

}... \

Uses the Java reflection API

See docs.oracle.com/javase/tutorial/reflect

https://docs.oracle.com/javase/tutorial/reflect

Overview of Java Atomic Operations & Variables

 Java supports several types public class AtomicBoolean ... {
of atomic actions, e.g. private static final Unsafe unsafe

private static final long
valueOffset;

« Atomic classes

« Use Java Unsafe internally
to implement “lock-free”

private volatile int wvalue;

ic {

algorithms valueOffset = unsafe
.objectFieldOffset
(AtomicBoolean.class.
Note the “value” getDeclaredField("value")) ;
field is volatile

See en.wikipedia.org/wiki/Volatile variable#In Java

http://en.wikipedia.org/wiki/Volatile_variable#In_Java

Overview of Java Atomic Operations & Variables

 Java supports several types public class AtomicBoolean ... {

of atomic actions, e.g. ce
public final boolean compareAndSet

(boolean expected,
boolean updated) {
int e expected ? 1 : O;
int u updated ? 1 : O;
return unsafe.compareAndSwapInt
(this, valueOffset, e, u);

e Atomic classes

« compareAndSet() uses Unsafe
.compareAndSwaplInt()

See www.docjar.com/docs/api/sun/misc/Unsafe.html#compareAndSwaplInt

http://www.docjar.com/docs/api/sun/misc/Unsafe.html#compareAndSwapInt

Overview of Java Atomic Operations & Variables

 Java supports several types public class AtomicBoolean ... {

of atomic actions, e.g. ce
public final boolean compareAndSet

(boolean expected,
boolean updated) {
int e expected ? 1 : O;
int u updated ? 1 : O;
return unsafe.compareAndSwapInt
(this, valueOffset, /e, u);

e Atomic classes

« compareAndSet() uses Unsafe

.compareAndSwaplInt() Atomically updated field at
valueOffset to updated'iff its

currently holding ‘expected’

See www.docjar.com/docs/api/sun/misc/Unsafe.html#compareAndSwaplInt

http://www.docjar.com/docs/api/sun/misc/Unsafe.html#compareAndSwapInt

Overview of Java Atomic Operations & Variables

 Java supports several types public class AtomicBoolean ... {

of atomic actions, e.g. ce
public final boolean compareAndSet

(boolean expected,
boolean updated) {
int e expected ? 1 : O;
int u updated ? 1 : O;
return unsafe.compareAndSwapInt
(this, valueOffset, e, u);

e Atomic classes

« compareAndSet() uses Unsafe

.compareAndSwaplInt() Returns true if successful, whereas
false indicates that the actual value
was not equal to the expected value

See www.docjar.com/docs/api/sun/misc/Unsafe.html#compareAndSwaplInt

http://www.docjar.com/docs/api/sun/misc/Unsafe.html#compareAndSwapInt

Overview of Java Atomic Operations & Variables

 Java supports several types
of atomic actions, e.g.

e Atomic classes

« compareAndSet() uses Unsafe
.compareAndSwaplInt()

public class AtomicBoolean ... {

public final boolean compareAndSet

}

(boolean expected,
boolean updated) {
int e = expected ? 1 : O;
int u = updated ? 1 : 0;
return unsafe.compareAndSwapInt
(this, wvalueOffset,
e, u);

public final void set(boolean

newValue) {
value = newValue ? 1 : 0;

/

Unconditionally sets ‘value’ to given newValue
via an atomic write on the volatile 'value’

33

End of Overview of Java
Atomic Operations &
Variables

34

