
Overview of the Java Executor Framework 

(Part 1)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software 

Integrated Systems

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

• Understand the purpose of the 
Java executor framework 

Learning Objectives in this Part of the Lesson

Decouples thread creation & management from the rest of the app logic



3

Cached (Variable-sized)

Thread Pool

Work-stealing

Thread Pool

Fixed-sized

Thread Pool
• Understand the purpose of the 

Java executor framework

• Know the types of thread pools 
supported by the framework 

Learning Objectives in this Part of the Lesson



4

• Understand the purpose of the 
Java executor framework

• Know the types of thread pools 
supported by the framework 

• Recognize a human known 
use of thread pools

Learning Objectives in this Part of the Lesson



5

Overview of the Java 
Executor Framework



6

Overview of The Java Executor Framework
• Java’s executor framework provides 

many classes & interfaces

Decouples thread creation & management from the rest of the app logic



7

• The Executors utility class provides
access to key mechanisms in the 
Java executor framework

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html

Overview of The Java Executor Framework

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html


8

• The Executors utility class provides
access to key mechanisms in the 
Java executor framework

• A utility class is a final class
having only static methods, no 
state, & a private constructor

Overview of The Java Executor Framework

See www.quora.com/What-is-the-best-way-to-write-utility-classes-in-Java/answer/Jon-Harley

http://www.quora.com/What-is-the-best-way-to-write-utility-classes-in-Java/answer/Jon-Harley


9

Overview of The Java Executor Framework
• The Executors utility class provides

access to key mechanisms in the 
Java executor framework

• A utility class is a final class
having only static methods, no 
state, & a private constructor

• Its factory methods create 
various types of thread pools

See en.wikipedia.org/wiki/Thread_pool_pattern

http://en.wikipedia.org/wiki/Thread_pool_pattern


10

Overview of Thread Pools



11

Overview of Thread Pools
• Concurrent programs must often handle a large # of clients

e.g., consider a web server that must handle 
thousands of client requests simultaneously



12

Overview of Thread Pools
• However, spawning a thread per client doesn’t scale



13

Overview of Thread Pools
• However, spawning a thread per client doesn’t scale

• Dynamically spawning a thread per client incurs 
excessive processing overhead

void handleClientRequest(Request request) {

new Thread(makeRequestRunnable(request));

...



14

Overview of Thread Pools
• However, spawning a thread per client doesn’t scale

• Dynamically spawning a thread per client incurs 
excessive processing overhead

• An excessive amount of memory is also needed 
to store all the threads



15

Overview of Thread Pools
• A pool of threads is often a better way to scale 

concurrent app performance

See en.wikipedia.org/wiki/Thread_pool_pattern

http://en.wikipedia.org/wiki/Thread_pool_pattern


16

Overview of Thread Pools
• A pool of threads is often a better way to scale 

concurrent app performance

• Amortizes memory/processing overhead 
associated with spawning threads

See cs.stackexchange.com/a/25899

https://cs.stackexchange.com/a/25899


17

Overview of Thread Pools
• A pool of threads is often a better way to scale 

concurrent app performance

• Amortizes memory/processing overhead 
associated with spawning threads

• Pool size determined by factors like # of cores, 
I/O-bound vs. compute-bound tasks, etc.

See www.ibm.com/developerworks/library/j-jtp0730

http://www.ibm.com/developerworks/library/j-jtp0730


18

Overview of Thread Pools
• Java’s executor framework supports several types of thread pools



19

Overview of Thread Pools

mExecutor = Executors

.newFixedThreadPool

(sMAX_THREADS);

...

void handleClientRequest(Request request) {

mExecutor.execute(makeRequestRunnable(request));

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html#newFixedThreadPool

• Java’s executor framework supports several types of thread pools

• Fixed-size pool

• Reuses a fixed # of threads to amortize 
creation overhead

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html#newFixedThreadPool-int-


20

Overview of Thread Pools

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html#newFixedThreadPool

• Java’s executor framework supports several types of thread pools

• Fixed-size pool

• Reuses a fixed # of threads to amortize 
creation overhead

Tasks are queued until a thread is available

runnable

runnable

runnable

runnable

runnable

Work

Queue

mExecutor = Executors

.newFixedThreadPool

(sMAX_THREADS);

...

void handleClientRequest(Request request) {

mExecutor.execute(makeRequestRunnable(request));

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html#newFixedThreadPool-int-


21

• Java’s executor framework supports several types of thread pools

• Fixed-size pool

• Reuses a fixed # of threads to amortize 
creation overhead

• Compute-bound tasks on an N-core CPU 
run best with a pool of ~N threads

Overview of Thread Pools

See www.ibm.com/developerworks/library/j-jtp0730

http://www.ibm.com/developerworks/library/j-jtp0730


22

• Java’s executor framework supports several types of thread pools

• Fixed-size pool

• Reuses a fixed # of threads to amortize 
creation overhead

• Compute-bound tasks on an N-core CPU 
run best with a pool of ~N threads

• I/O-bound tasks on an N-core CPU run 
best with N*(1+WT/ST) threads 

• WT = wait time & ST = service time

Overview of Thread Pools

The goal is to keep the cores fully utilized



23

• Java’s executor framework supports several types of thread pools

• Fixed-size pool

• Reuses a fixed # of threads to amortize 
creation overhead

• Compute-bound tasks on an N-core CPU 
run best with a pool of ~N threads

• I/O-bound tasks on an N-core CPU run 
best with N*(1+WT/ST) threads 

• WT = wait time & ST = service time

• You can estimate the ratio for a 
typical request using profiling

Overview of Thread Pools

See www.baeldung.com/java-profilers

http://www.baeldung.com/java-profilers


24

• Java’s executor framework supports several types of thread pools

• Fixed-size pool

• Reuses a fixed # of threads to amortize 
creation overhead

• Compute-bound tasks on an N-core CPU 
run best with a pool of ~N threads

• I/O-bound tasks on an N-core CPU run 
best with N*(1+WT/ST) threads 

• Deadlock can be a problem with
fixed-size thread pools that use
bounded queues

Overview of Thread Pools

See en.wikipedia.org/wiki/Deadlock

https://en.wikipedia.org/wiki/Deadlock


25

mExecutor = Executors

.newCachedThreadPool();

...

void handleClientRequest(Request request) {

mExecutor.execute(makeRequestRunnable(request));

Overview of Thread Pools

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html#newCachedThreadPool

• Java’s executor framework supports several types of thread pools

• Fixed-size pool

• Cached

• Create new threads on-demand in 
response to client workload

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html#newCachedThreadPool--


26

Overview of Thread Pools

mExecutor = Executors

.newCachedThreadPool();

...

void handleClientRequest(Request request) {

mExecutor.execute(makeRequestRunnable(request));

• Java’s executor framework supports several types of thread pools

• Fixed-size pool

• Cached

• Create new threads on-demand in 
response to client workload

Threads are terminated if not used for a certain time



27

Overview of Thread Pools
• Java’s executor framework supports several types of thread pools

• Fixed-size pool

• Cached

• Create new threads on-demand in 
response to client workload

• There’s no need to estimate the size
of the thread pool



28

Overview of Thread Pools
• Java’s executor framework supports several types of thread pools

• Fixed-size pool

• Cached

• Create new threads on-demand in 
response to client workload

• There’s no need to estimate the size
of the thread pool

• However, performance may suffer due
to overhead of creating new threads



29See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html#newWorkStealingPool

Overview of Thread Pools

mExecutor = Executors

.newWorkStealingPool();

...

void handleClientRequest(Request request) {

mExecutor.execute(makeRequestRunnable(request)); ...

• Java’s executor framework supports several types of thread pools

• Fixed-size pool

• Cached

• Fork/join pool

• Supports “work-stealing” queues 
that maximize core utilization

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html#newWorkStealingPool--


30

Overview of Thread Pools

mExecutor = Executors

.newWorkStealingPool();

...

void handleClientRequest(Request request) {

mExecutor.execute(makeRequestRunnable(request)); ...

• Java’s executor framework supports several types of thread pools

• Fixed-size pool

• Cached

• Fork/join pool

• Supports “work-stealing” queues 
that maximize core utilization

The pool size defaults to all available 
cores as its target parallelism level 



31

Overview of Thread Pools
• Java’s executor framework supports several types of thread pools

• Fixed-size pool

• Cached

• Fork/join pool

• Supports “work-stealing” queues 
that maximize core utilization

• Strike a balance between a fixed-
& variable # of threads in the pool



32

Overview of Thread Pools
• There are also other ways to implement thread pools

See www.dre.vanderbilt.edu/~schmidt/PDF/lf.pdf & www.dre.vanderbilt.edu/~schmidt/PDF/HS-HA.pdf

http://www.dre.vanderbilt.edu/~schmidt/PDF/lf.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/HS-HA.pdf


33

Human Known Uses 
of Thread Pools



34

• A “call center” is a human 
known use of a thread pool

See en.wikipedia.org/wiki/Call_centre

Human Known Uses of Thread Pools

http://en.wikipedia.org/wiki/Call_centre


35

End of Overview of the 
Java Executor Framework 

(Part 1)


