
The Java Executor Interface (Part 2)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Recognize the simple/single feature provided by the

Java Executor interface

• Learn how to program a simple “prime checker” app
using the Java Executor interface

3

Overview of the
PrimeChecker App

4See github.com/douglascraigschmidt/POSA/tree/master/ex/M4/Primes/PrimeExecutor

• This app shows how to use the Java Executor framework
to check if N random #’s are prime

Overview of the PrimeChecker App

https://github.com/douglascraigschmidt/POSA/tree/master/ex/M4/Primes/PrimeExecutor

5See en.wikipedia.org/wiki/Prime_number

• This app shows how to use the Java Executor framework
to check if N random #’s are prime

• Each natural # divisible only by 1 & itself is prime

Overview of the PrimeChecker App

https://en.wikipedia.org/wiki/Prime_number

6

• This app shows how to use the Java Executor framework
to check if N random #’s are prime

• Each natural # divisible only by 1 & itself is prime

Overview of the PrimeChecker App

The user can select the # ‘N’

7

• This app shows how to use the Java Executor framework
to check if N random #’s are prime

• Each natural # divisible only by 1 & itself is prime

Overview of the PrimeChecker App

The user can also start running the app

8

• This app has several notable properties

Overview of the PrimeChecker App

9See en.wikipedia.org/wiki/Embarrassingly_parallel

• This app has several notable properties

• It is “embarrassingly parallel”

• i.e., no data dependencies between worker threads

Overview of the PrimeChecker App

https://en.wikipedia.org/wiki/Embarrassingly_parallel

10See en.wikipedia.org/wiki/CPU-bound

• This app has several notable properties

• It is “embarrassingly parallel”

• It is compute-bound

• i.e., time to complete a task is dictated by CPU speed

Overview of the PrimeChecker App

https://en.wikipedia.org/wiki/CPU-bound

11

long isPrime(long n) {

if (n > 3)

for (long factor = 2;

factor <= n / 2;

++factor)

if (n / factor * factor

== n)

return factor;

return 0;

}

• PrimeRunnable defines a brute-force means to check if
a # is prime

Overview of the PrimeChecker App

See www.mkyong.com/java/how-to-determine-a-prime-number-in-java

http://www.mkyong.com/java/how-to-determine-a-prime-number-in-java

12

long isPrime(long n) {

if (n > 3)

for (long factor = 2;

factor <= n / 2;

++factor)

if (n / factor * factor

== n)

return factor;

return 0;

}

• PrimeRunnable defines a brute-force means to check if
a # is prime

Overview of the PrimeChecker App

See en.wikipedia.org/wiki/CPU-bound

Note how this algorithm
is “compute-bound”

https://en.wikipedia.org/wiki/CPU-bound

13

long isPrime(long n) {

if (n > 3)

for (long factor = 2;

factor <= n / 2;

++factor)

if (n / factor * factor

== n)

return factor;

return 0;

}

The goal is to burn non-trivial CPU time!!

• PrimeRunnable defines a brute-force means to check if
a # is prime

Return 0 if # is prime
or smallest factor if not

Overview of the PrimeChecker App

14

mExecutor = Executors.newFixedThreadPool

(Runtime.getRuntime().

availableProcessors());

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html#newFixedThreadPool

• This app uses a Java Executor that’s implemented w/a
fixed-size thread pool tuned to the # of processor cores
in the computing device

Creates a thread pool that reuses a fixed # of
threads operating off a shared unbounded queue

Overview of the PrimeChecker App

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html#newFixedThreadPool-int-

15

• This app uses a Java Executor that’s implemented w/a
fixed-size thread pool tuned to the # of processor cores
in the computing device

mExecutor = Executors.newFixedThreadPool

(Runtime.getRuntime().

availableProcessors());

Returns # of processors available
to the Java execution environment

See docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html#availableProcessors

Overview of the PrimeChecker App

https://docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html#availableProcessors--

16

• This app uses a Java Executor that’s implemented w/a
fixed-size thread pool tuned to the # of processor cores
in the computing device

mExecutor = Executors.newFixedThreadPool

(Runtime.getRuntime().

availableProcessors());

This value is suitable since isPrime()
is inherently a “compute-bound” task

See en.wikipedia.org/wiki/CPU-bound

Overview of the PrimeChecker App

https://en.wikipedia.org/wiki/CPU-bound

17

• MainActivity creates/executes a PrimeRunnable for each
of the "count" random #

new Random()

.longs(count,

sMAX_VALUE - count, sMAX_VALUE)

.forEach(randomNumber ->

mExecutor.execute

(new PrimeRunnable

(this, randomNumber)));

Overview of the PrimeChecker App

18

• MainActivity creates/executes a PrimeRunnable for each
of the "count" random #

new Random()

.longs(count,

sMAX_VALUE - count, sMAX_VALUE)

.forEach(randomNumber ->

mExecutor.execute

(new PrimeRunnable

(this, randomNumber)));

These random longs are in the range
sMAX_VALUE – count & sMAX_VALUE

Overview of the PrimeChecker App

sMAX_VALUE is set to a large #, e.g., 1,000,000,000

19

• MainActivity creates/executes a PrimeRunnable for each
of the "count" random #

new Random()

.longs(count,

sMAX_VALUE - count, sMAX_VALUE)

.forEach(randomNumber ->

mExecutor.execute

(new PrimeRunnable

(this, randomNumber)));

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html#execute

Each random long is queued for
execution by a thread in the pool

Overview of the PrimeChecker App

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html#execute-java.lang.Runnable-

20

• MainActivity creates/executes a PrimeRunnable for each
of the "count" random #

new Random()

.longs(count,

sMAX_VALUE - count, sMAX_VALUE)

.forEach(randomNumber ->

mExecutor.execute

(new PrimeRunnable

(this, randomNumber)));

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html#execute

Each random long is queued for
execution by a thread in the pool

Overview of the PrimeChecker App

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html#execute-java.lang.Runnable-

21

• PrimeRunnable determines if a # is prime

class PrimeRunnable implements Runnable {

long mPrimeCandidate;

private final MainActivity mActivity;

...

PrimeRunnable(MainActivity a, Long pc)

{ mActivity = a; mPrimeCandidate = pc; }

long isPrime(long n) { ... }

PrimeResult run() {

long smallestFactor =

isPrime(mPrimeCandidate);

} ...

See PrimeExecutor/app/src/main/java/vandy/mooc/prime/activities/PrimeRunnable.java

Overview of the PrimeChecker App

https://github.com/douglascraigschmidt/POSA/blob/master/ex/M4/Primes/PrimeExecutor/app/src/main/java/vandy/mooc/prime/activities/PrimeRunnable.java

22

• PrimeRunnable determines if a # is prime

class PrimeRunnable implements Runnable {

long mPrimeCandidate;

private final MainActivity mActivity;

...

PrimeRunnable(MainActivity a, Long pc)

{ mActivity = a; mPrimeCandidate = pc; }

long isPrime(long n) { ... }

PrimeResult run() {

long smallestFactor =

isPrime(mPrimeCandidate);

} ...

See docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

Implements Runnable

Overview of the PrimeChecker App

https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

23

• PrimeRunnable determines if a # is prime

class PrimeRunnable implements Runnable {

long mPrimeCandidate;

private final MainActivity mActivity;

...

PrimeRunnable(MainActivity a, Long pc)

{ mActivity = a; mPrimeCandidate = pc; }

long isPrime(long n) { ... }

PrimeResult run() {

long smallestFactor =

isPrime(mPrimeCandidate);

} ...

Overview of the PrimeChecker App

Constructor stores prime # candidate & activity

24

• PrimeRunnable determines if a # is prime

class PrimeRunnable implements Runnable {

long mPrimeCandidate;

private final MainActivity mActivity;

...

PrimeRunnable(MainActivity a, Long pc)

{ mActivity = a; mPrimeCandidate = pc; }

long isPrime(long n) { ... }

PrimeResult run() {

long smallestFactor =

isPrime(mPrimeCandidate);

} ...

Returns 0 if n is prime or
smallest factor if it’s not

Overview of the PrimeChecker App

25

• PrimeRunnable determines if a # is prime

class PrimeRunnable implements Runnable {

long mPrimeCandidate;

private final MainActivity mActivity;

...

PrimeRunnable(MainActivity a, Long pc)

{ mActivity = a; mPrimeCandidate = pc; }

long isPrime(long n) { ... }

PrimeResult run() {

long smallestFactor =

isPrime(mPrimeCandidate);

} ...

Overview of the PrimeChecker App

The run() hook method invokes isPrime()

26

• Although there may be many PrimeRunnable instances,
they will run on a (much) smaller # of threads, which
can be tuned transparently

runnable

runnable

runnable

runnable

runnable

runnable

runnable

...

Overview of the PrimeChecker App

27

Evaluating the
PrimeChecker App

28

Fixed-sized Thread Pool

• The Java Executor interface enables the # & type of threads to be tuned
transparently wrt the prime checker app logic

Evaluating the PrimeChecker App

new Random().longs(count, sMAX_VALUE - count, sMAX_VALUE)

.forEach(randomNumber -> mExecutor.execute

(new PrimeRunnable(this, randomNumber)));

Variable-sized Thread Pool Work-stealing Thread Pool

29

• However, Java Executor has some restrictions

Evaluating the PrimeChecker App

30

• However, Java Executor has some restrictions, e.g.

• One-way semantics of runnables tightly
couple PrimeRunnable with MainActivity

class PrimeRunnable implements Runnable {

...

private final MainActivity mActivity;

...

public PrimeRunnable(MainActivity activity)

{ mActivity = activity; ... }

public void run() {

... mActivity.done(); ...

}

}

This tight coupling complicates runtime configuration changes

Evaluating the PrimeChecker App

31

• However, Java Executor has some restrictions, e.g.

• One-way semantics of runnables tightly
couple PrimeRunnable with MainActivity

• isPrime() tightly coupled w/PrimeRunnable

class PrimeRunnable implements Runnable {

...

long isPrime(long n) {

if (n > 3)

for (long factor = 2;

factor <= n / 2; ++factor)

if (n / factor * factor == n)

return factor;

return 0;

} ...

e.g., primality check is applied even if results are computed & complicates improvements

Evaluating the PrimeChecker App

32

• However, Java Executor has some restrictions, e.g.

• One-way semantics of runnables tightly
couple PrimeRunnable with MainActivity

• isPrime() tightly coupled w/PrimeRunnable

• The lack of lifecycle operations on
Java Executor

Evaluating the PrimeChecker App

33

• However, Java Executor has some restrictions, e.g.

• One-way semantics of runnables tightly
couple PrimeRunnable with MainActivity

• isPrime() tightly coupled w/PrimeRunnable

• The lack of lifecycle operations on
Java Executor, e.g.

• Can’t interrupt/cancel running tasks

Evaluating the PrimeChecker App

34

• However, Java Executor has some restrictions, e.g.

• One-way semantics of runnables tightly
couple PrimeRunnable with MainActivity

• isPrime() tightly coupled w/PrimeRunnable

• The lack of lifecycle operations on
Java Executor, e.g.

• Can’t interrupt/cancel running tasks

• Can’t handle runtime configuration
changes gracefully

• e.g., must restart processing
from the beginning

Evaluating the PrimeChecker App

35

End of Overview of
Java Executor Interface

(Part 2)

