The Java Executor Interface (Part 2}

Douglas C. Schmidt
i.schmidt@vanderbiit.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software
E 7 Integrated Systems
Vanderhilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Learn how to program a simple “prime checker” app
using the Java Executor interface

tarting primality computations
869137601 is not prime with smallest factor 67
181858090 is not prime with smallest factor 2
974979154 is not prime with smallest factor 2
1870407455 is not prime with smallest factor 5
833235127 is not prime with smallest factor 17
651621695 is not prime with smallest factor 5
1311987041 is not prime with smallest factor 971
703018233 is not prime with smallest factor 3
1055928155 is not prime with smallest factor 5
833102181 is not prime with smallest factor 3
1030676473 is not prime with smallest facter 619
127457798 is not prime with smallest factor 2
583326869 is prime

16682593 is not prime with smallest factor 11
509282196 is not prime with smallest factor 2
755195772 is not prime with smallest factor 2
1320523007 is not prime with smallest factor 37
587637322 is not prime with smallest factor 2
1766004629 is prime

28824527 is not prime with smallest factor 79

4461966 is not prime with smallest factor 2
[1679873625 is not prime with smallest factor 3
139079501 is not prime with smallest factor 11
1699167856 is not prime with smallest factor 2
1563413821 is prime
Finished primality computations

Overview of the
PrimeChecker App

Overview of the PrimeChecker App

 This app shows how to use the Java Executor framework
to check if Nrandom #'s are prime

tarting primality computations
669137601 is not prime with smallest factor 67
181858090 is not prime with smallest factor 2
974979154 is not prime with smallest factor 2
1870407455 is not prime with smallest factor 5
833235127 is not prime with smallest factor 17
651621695 is not prime with smallest factor 5
1311987041 is not prime with smallest factor 971
703018233 is not prime with smallest factor 3
1055928155 is not prime with smallest factor 5
833102181 is not prime with smallest factor 3
1030676473 is not prime with smallest factor 619
127457798 is not prime with smallest factor 2
583326869 is prime
16682593 is not prime with smallest factor 11
509282196 is not prime with smallest factor 2
(755195772 is not prime with smallest factor 2
Il1320523007 is not prime with smallest faclor 37
587637322 is not prime with smallest factor 2
1766004629 is prime
28824527 is not prime with smallest factor 79
4461966 is not prime with smallest factor 2
[1679873625 is not prime with smallest factor 3
139079501 is not prime with smallest factor 11
1699167856 is not prime with smallest factor 2
1563413821 is prime
Finished primality computations

See github.com/douglascraigschmidt/POSA/tree/master/ex/M4/Primes/PrimeExecutor

https://github.com/douglascraigschmidt/POSA/tree/master/ex/M4/Primes/PrimeExecutor

Overview of the PrimeChecker App

 This app shows how to use the Java Executor framework
to check if Nrandom #'s are prime

» Each natural # divisible only by 1 & itself is prime

2 3 5 7 11
13 17 19 23 29
31 37 41 43 47
53 59 61 67 71
73 79 83 89 97

Starting primality computations
669137601 is not prime with smallest factor 67
181858090 is not prime with smallest factor 2
974979154 is not prime with smallest factor 2
1870407455 is not prime with smallest factor 5
833235127 is not prime with smallest factor 17
651621695 is not prime with smallest factor 5
1311987041 is not prime with smallest factor 971
703018233 is not prime with smallest factor 3
1055928155 is not prime with smallest factor 5
833102181 is not prime with smallest factor 3
1030676473 is not prime with smallest factor 619
127457798 is not prime with smallest factor 2
583326869 is prime

16682593 is not prime with smallest factor 11

(509282196 is not prime with smallest factor 2

755195772 is not prime with smallest factor 2
1320523007 is not prime with smallest factor 37
587637322 is not prime with smallest factor 2
1766004629 is prime

28874527 is not prime with smallest factor 79
74467966 is not prime with smallest factor 2
[1679873625 is not prime with smallest factor 3
139079501 is not prime with smallest factor 11
1699167856 is not prime with smallest factor 2
1563413821 is prime
Finished primality computations

See en.wikipedia.org/wiki/Prime_number

https://en.wikipedia.org/wiki/Prime_number

Overview of the PrimeChecker App

 This app shows how to use the Java Executor framework
to check if Nrandom #'s are prime

« Each natural # divisible only by 1 & itself is prime

The user can select the # ‘N’

tarting primality computations

669137601 is not prime with smallest factor 67
181858090 is not prime with smallest factor 2
974979154 is not prime with smallest factor 2
1870407455 is not prime with smallest factor 5
833235127 is not prime with smallest factor 17
651621695 is not prime with smallest factor 5
1311987041 is not prime with smallest factor 971
703018233 is not prime with smallest factor 3
1055928155 is not prime with smallest factor 5
833102181 is not prime with smallest factor 3
1030676473 is not prime with smallest factor 619
127457798 is not prime with smallest factor 2
-53326869 is prime

16682593 is not prime with smallest factor 11
(509282196 is not prime with smallest factor 2
755195772 is not prime with smallest factor 2
1320523007 is not prime with smallest factor 37
587637322 is not prime with smallest factor 2
1766004629 is prime

28874527 is not prime with smallest factor 79
74467966 is not prime with smallest factor 2
[1679873625 is not prime with smallest factor 3
139079501 is not prime with smallest factor 11
1699167856 is not prime with smallest factor 2
1563413821 is prime

Finished primality computations

Overview of the PrimeChecker App

 This app shows how to use the Java Executor framework
to check if Nrandom #'s are prime

« Each natural # divisible only by 1 & itself is prime

The user can also start running the app

tarting primality computations

669137601 is not prime with smallest factor 67
181858090 is not prime with smallest factor 2
974979154 is not prime with smallest factor 2
1870407455 is not prime with smallest factor 5
833235127 is not prime with smallest factor 17
651621695 is not prime with smallest factor 5
1311987041 is not prime with smallest factor 971
703018233 is not prime with smallest factor 3
1055928155 is not prime with smallest factor 5
833102181 is not prime with smallest factor 3
1030676473 is not prime with smallest factor 619
127457798 is not prime with smallest factor 2

583326869 is prime

16682593 is not prime with smallest factor 11

(509282196 is not prime with smallest factor 2

755195772 is not prime with smallest factor 2
1320523007 is not prime with smallest factor 37

(ll587637322 is not prime with smallest factor 2

1766004629 is prime

28874527 is not prime with smallest factor 79
74467966 is not prime with smallest factor 2
[1679873625 is not prime with smallest factor 3
139079501 is not prime with smallest factor 11
1699167856 is not prime with smallest factor 2
1563413821 is prime
Finished primality computations

Overview of the PrimeChecker App

 This app has several notable properties

tarting primality computations

669137601 is not prime with smallest factor 67
181858090 is not prime with smallest factor 2
974979154 is not prime with smallest factor 2
1870407455 is not prime with smallest factor 5
833235127 is not prime with smallest factor 17
651621695 is not prime with smallest factor 5
1311987041 is not prime with smallest factor 971
703018233 is not prime with smallest factor 3
1055928155 is not prime with smallest factor 5
833102181 is not prime with smallest factor 3
1030676473 is not prime with smallest factor 619
127457798 is not prime with smallest factor 2

583326869 is prime

16682593 is not prime with smallest factor 11

509282196 is not prime with smallest factor 2

i

755195772 is not prime with smallest factor 2
1320523007 is not prime with smallest factor 37

587637322 is not prime with smallest factor 2

1766004629 is prime
28824527 is not prime with smallest factor 79
4461966 is not prime with smallest factor 2
[1679873625 is not prime with smallest factor 3
139079501 is not prime with smallest factor 11
1699167856 is not prime with smallest factor 2
1563413821 is prime
Finished primality computations

Overview of the PrimeChecker App

tarting primality computations
869137601 is not prime with smallest factor 67

 This app has several notable properties
« It is “embarrassingly parallel” e
- i.e, no data dependencies between worker threads i iminiie

651621695 is not prime with smallest factor 5
1311987041 is not prime with smallest factor 971
703018233 is not prime with smallest factor 3
1055928155 is not prime with smallest factor 5
833102181 is not prime with smallest factor 3
1030676473 is not prime with smallest facter 619
127457798 is not prime with smallest factor 2
583326869 is prime

16682593 is not prime with smallest factor 11
509282196 is not prime with smallest factor 2
755195772 is not prime with smallest factor 2
1320523007 is not prime with smallest factor 37
587637322 is not prime with smallest factor 2
1766004629 is prime

78824527 is not prime with smallest factor 79
24461966 is not prime with smallest factor 2
1679873625 is not prime with smallest factor 3
139079501 is not prime with smallest factor 11
1699167856 is not prime with smallest factor 2
1563413821 is prime
Finished primality computations

\
- Q"""

Embarrassingly parallel

https://en.wikipedia.org/wiki/Embarrassingly_parallel

Overview of the PrimeChecker App

 This app has several notable properties

« It is compute-bound
i.e., time to complete a task is dictated by CPU speed

tarting primality computations
8691376071 is not prime with smallest factor 67
181858090 is not prime with smallest factor 2
974979154 is not prime with smallest factor 2
1870407455 is not prime with smallest factor 5
833235127 is not prime with smallest factor 17
651621695 is not prime with smallest factor 5
1311987041 is not prime with smallest factor 971
703018233 is not prime with smallest factor 3
1055928155 is not prime with smallest factor 5
833102181 is not prime with smallest factor 3
1030676473 is not prime with smallest facter 619
127457798 is not prime with smallest factor 2
583326869 is prime

16682593 is not prime with smallest factor 11
509282196 is not prime with smallest factor 2
755195772 is not prime with smallest factor 2
1320523007 is not prime with smallest factor 37
587637322 is not prime with smallest factor 2
1766004629 is prime

28874527 is not prime with smallest factor 79
24461966 is not prime with smallest factor 2
1679873625 is not prime with smallest factor 3
139079501 is not prime with smallest factor 11
1699167856 is not prime with smallest factor 2
1563413821 is prime
Finished primality computations

See en.wikipedia.org/wiki/CPU-bound

https://en.wikipedia.org/wiki/CPU-bound

Overview of the PrimeChecker App

« PrimeRunnable defines a brute-force means to check if
a # Is prime 2

long isPrime (long n) {
if (n > 3)

for (long factor = 2;
factor <=n / 2;
++factor)

if (n / factor * factor
== n)

return factor;

return O;

<<Java Class>>

(® MainActivity

@ MainActivity()

< onCreate(Bundle):void

@ initializeViews(Bundle)-void
@ setCount{View):void

@ handleStartButton(View):void
@ statComputations{int)void
@ done()void

@ println{String):void

< onResume()void

I
-mActivity | 0..1

=< lava Class=>

(& PrimeRunnable

@ PrimeRunnable(MainActivity. long)

= isPrime(long.long,long):long

@ run{)void

See www.mkyong.com/java/how-to-determine-a-prime-number-in-java

http://www.mkyong.com/java/how-to-determine-a-prime-number-in-java

Overview of the PrimeChecker App

* PrimeRunnable defines a brute-force means to check if
a # is prime

long isPrime (long n) {
if (n > 3)
for (long factor =
factor <= n /
++factor)
if (n / factor * factor
== n)

return factor; \\\\

return 0; Note how this algorithm
} is "compute-bound”

2;
2;

<<Java Class>>

(® MainActivity

@ MainActivity()

< onCreate(Bundle):void

@ initializeViews(Bundle)-void
@ setCount{View):void

@ handleStartButton(View):void
@ statComputations{int)void
@ done()void

@ println{String):void

< onResume()void

M
-mActivity | 0..1

=< lava Class=>

(& PrimeRunnable

@ PrimeRunnable(MainActivity. long)

® iIsPnme(long,long.long):long

@ run{)void

See en.wikipedia.org/wiki/CPU-bound

https://en.wikipedia.org/wiki/CPU-bound

Overview of the PrimeChecker App

 PrimeRunnable defines a brute-force means to check if <<Java Class>>
a # is prime _OMainActiviy
& MainActity()
long isPrime(long n) { < onCreate(Bundle):void
. @ initializeViews(Bundle)-void
if (n > 3) @ setCount{View):void
for (long factor = 2; @ handleStartButton(View)void
factor <= n / 2; @ statComputations{int)void
@ done()void
++factor) @ println{String):void
if (n / factor * factor < onResume():void
== n) ‘ i
-mActivity | 0.1

return factor;

=< lava Class=>

(& PrimeRunnable

return 0; \

} ~— Return 0 if # is prime

or smallest factor if not @ PrimeRunnable(MainActivity. long)

® iIsPnme(long,long.long):long

@ run{)void

The goal is to burn non-trivial CPU time!!

Overview of the PrimeChecker App

« This app uses a Java Executor that's implemented w/a <<Java Class>>
fixed-size thread pool tuned to the # of processor cores | ©MainActivity
. . . @ MainActivity()
in the computing device

< onCreate(Bundle):void
@ initializeViews(Bundle)-void
mExecutor = Executors.newFixedThreadPool @ setCount(View):void

(Runtime. getRuntime 0. @ handIeStartEqutn:unMeuu}:ymd
@ statComputations{int)void

availableProcessors()) ; o done()-void
@ println{String):void
< onResume()void

Creates a thread pool that reuses a fixed # of ‘mActivity | 0.1
threads operating off a shared unbounded queue

=< lava Class=>

(& PrimeRunnable

@ PrimeRunnable(MainActivity.long)
@ isPrime(long,long,long):long
@ run{)-void

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html#newFixed ThreadPool

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html#newFixedThreadPool-int-

Overview of the PrimeChecker App

« This app uses a Java Executor that's implemented w/a <<Java Class>>
fixed-size thread pool tuned to the # of processor cores | ©MainActivity
. . . @ MainActivity()
in the computing device

< onCreate(Bundle):void
@ initializeViews(Bundle)-void

mExecutor = Executors.newFixedThreadPool @ setCount(View):void
(Runtime getRuntime () @ handleStartButton(View):void
)) ’ @ startComputations(int)-void
availableProcessors()) ; o done()-void
@ println{String):void
< onResume()void
M
Returns # of processors available -mActiity | 0-.1

to the Java execution environment

=< lava Class=>

(& PrimeRunnable

@ PrimeRunnable(MainActivity.long)
@ isPrime(long,long,long):long
@ run{)-void

See docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html#availableProcessors

https://docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html#availableProcessors--

Overview of the PrimeChecker App

« This app uses a Java Executor that's implemented w/a <<Java Class>>
fixed-size thread pool tuned to the # of processor cores | ©MainActivity
. . . @ MainActivity()
in the computing device

< onCreate(Bundle):void

@ initializeViews(Bundle)-void

mExecutor = Executors.newFixedThreadPool @ setCount(View):void
(Runtime getRuntime () @ handleStartButton(View):void

. @ statComputations{int)void
availableProcessors()) ; o done()-void

@ println{String):void
< onResume()void
M

-mActivity | 0..1
This value is suitable since isPrime()
Is inherently a “compute-bound” task

=< lava Class=>

(& PrimeRunnable

@ PrimeRunnable(MainActivity.long)
@ isPrime(long,long,long):long
@ run{)-void

See en.wikipedia.org/wiki/CPU-bound

https://en.wikipedia.org/wiki/CPU-bound

Overview of the PrimeChecker App

* MainActivity creates/executes a PrimeRunnable for each <<Java Class>>
of the "count" random # _OMainActivity
@ MainActivity()
< onCreate(Bundle):void
new Random () @ initializeViews(Bundle)-void

@ setCount{View):void

g i arrle Sttt nnd Wes

.longs (count,
sMAX VALUE - count, sMAX VALUE)

@ println{String):void
.forEach (randomNumber -> < onResume()-vaid

mExecutor.execute

. -mActivity | 0..1
(new PrimeRunnable

(this, randomNumber))) ;

=< lava Class=>

(& PrimeRunnable

@ PrimeRunnable(MainActivity.long)
@ isPrime(long,long,long):long
@ run{)-void

17

Overview of the PrimeChecker App

 MainActivity creates/executes a PrimeRunnable for each <<Java Class>>
of the "count" random # s
@ MainActivity()

< onCreate(Bundle):void

These random /0/795 are in the range = initializeViews(Bundle):void
SMAX_VALUE — count & sMAX_VALUE | | @ setCount(View)void

.longs (count, —
sMAX VALUE - count, sMAX VALUE)

new Random ()

g i arrle Sttt nnd Wes

@ println{String):void
.forEach (randomNumber -> < onResume()-vaid

mExecutor.execute

. -mActivity | 0..1
(new PrimeRunnable

(this, randomNumber))) ;

=< lava Class=>

(& PrimeRunnable

@ PrimeRunnable(MainActivity.long)
@ isPrime(long,long,long):long
@ run{)-void

sMAX_VALUE is set to a large #, e.g., 1,000,000,000

Overview of the PrimeChecker App

* MainActivity creates/executes a PrimeRunnable for each <<Java Class>>
of the "count" random # _OMainActivity
@ MainActivity()
< onCreate(Bundle):void
new Random () @ initializeViews(Bundle)-void

@ setCount{View):void

g i arrle Sttt nnd Wes

.longs (count,
sMAX VALUE - count, sMAX VALUE)

@ println{String):void
.forEach (randomNumber -> < onResume()-vaid

mExecutor.execute i

. -mActivity | 0..1
(new PrimeRunnable

\\ (this, randomNumber))) ;

=< lava Class=>

(& PrimeRunnable

Each random /0/79 IS queued for @ PrimeRunnable(MainActivity, long)

execution by a thread in the pool = isPrime(long.long.long)-long
@ run{)-void

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html#execute

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html#execute-java.lang.Runnable-

Overview of the PrimeChecker App

« MainActivity creates/executes a PrimeRunnable for each <<Java Class>>

of the "count" random # _OMainActivity
@ MainActivity()

< onCreate(Bundle):void

@ initializeViews(Bundle)-void
new Random() @ setCount{View):void

. longs (count ’ @ handleStartButton(View):void
sMAX VALUE - count, sMAX VALUE) @ startComputations(int)-void

@ done()void
@ println{String):void
.forEach (randomNumber -> < onResume()-vaid

mExecutor.execute
(new PrimeRunnable

\\ (this, randomNumber))) ;

-mActivity | 0..1

<<Java Class=>
: & PrimeRunnable
Each /‘f‘:'ndom /0/79 IS q_ueued for @ PrimeRunnable(MainActivity, long)
execution by a thread in the pool = isPrime(long.long.long)-long

@ run{)-void

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html#execute

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html#execute-java.lang.Runnable-

Overview of the PrimeChecker App

« PrimeRunnable determines if a # is prime <<Java Class>>

i
class PrimeRunnable implements Runnable ({ &M'ffiﬂ}lmw
ainActivity

long mPrimeCandidate; % onCreate(Bundle)-void

private final MainActivity mActivity; m initializeViews(Bundle)-void
@ setCount{View):void

@ handleStartButton(View):void
@ statComputations{int)void

PrimeRunnable (MainActivity a, Long pc) © done():void

. _ . . . _ . @ printin{String)-void
{ mActivity = a; mPrimeCandidate = pc; } & onResume()void

long isPrime(long n) { ... } -mActivity | 0..1

PrimeResult run() { <<Java Class>>
long smallestFactor = ©PrimeRunnable
isPrime (mPrimeCandidate) ;

@ PrimeRunnable(MainActivity.long)
@ isPrime(long,long,long):long
}o... @ run{)-void

See PrimeExecutor/app/src/main/java/vandy/mooc/prime/activities/PrimeRunnable.java

https://github.com/douglascraigschmidt/POSA/blob/master/ex/M4/Primes/PrimeExecutor/app/src/main/java/vandy/mooc/prime/activities/PrimeRunnable.java

Overview of the PrimeChecker App

« PrimeRunnable determines if a # is prime <<Java Class>>
(® MainActivity

class PrimeRunnable implements Runnable ({

.) @ MainActivity()
long mPrimeCandidate; < onCreate(Bundle):void
private final MainActivity mActivity; m initializeViews(Bundle)-void
@ setCount{View):void
_I'mp/ements Runnable @ handleStartButton(View):void
@ statComputations{int)void
PrimeRunnable (MainActivity a, Long pc) @ done()void

. _ . . . _ . @ printin{String)-void
{ mActivity = a; mPrimeCandidate = pc; } & onResume()void

long isPrime(long n) { ... } -mActivity | 0..1

PrimeResult run() { <<Java Class>>
long smallestFactor = ©PrimeRunnable
isPrime (mPrimeCandidate) ;

@ PrimeRunnable(MainActivity.long)
@ isPrime(long,long,long):long
}o... @ run{)-void

See docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html |

https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

Overview of the PrimeChecker App

« PrimeRunnable determines if a # is prime <<Java Class>>

MainActivi
class PrimeRunnable implements Runnable ({ &M'ffiﬂ}lmw
ainActivity

long mPrimeCandidate; % onCreate(Bundle)-void

private final MainActivity mActivity; m initializeViews(Bundle)-void

@ setCount{View):void

" / Constructor stores prime # candidate & activity | | e handieStartButton(View)void
@ statComputations{int)void

PrimeRunnable (MainActivity a, Long pc) © done()-void

- - — . . . — . @ printin{String)-void
{ mActivity a; mPrimeCandidate pc; } o onResume{J:void

long isPrime(long n) { ... } -mActivity | 0..1

PrimeResult run() { <<Java Class>>
long smallestFactor = ©PrimeRunnable
isPrime (mPrimeCandidate) ;

@ PrimeRunnable(MainActivity.long)
@ isPrime(long,long,long):long
}o... @ run{)-void

23

Overview of the PrimeChecker App

« PrimeRunnable determines if a # is prime <<Java Class>>

MainActivi
class PrimeRunnable implements Runnable ({ &M'ffiﬂ}lmw
ainActivity

long mPrimeCandidate; < onCreate(Bundle):void
private final MainActivity mActivity; m initializeViews(Bundle)-void
@ setCount{View):void

@ handleStartButton(View):void
@ statComputations{int)void
PrimeRunnable (MainActivity a, Long pc) @ done()void

. _ . . . _ . @ printin{String)-void
{ mActivity = a; mPrimeCandidate = pc; } & onResume()void

long isPrime(long n) | Returns 0 if nis prime or mActiity | 0.1
| smallest factor if it’s not
PrimeResult run() { <<Java Class>>
long smallestFactor = ©PrimeRunnable

@ PrimeRunnable(MainActivity.long)
@ isPrime(long,long,long):long
}o... @ run{)-void

isPrime (mPrimeCandidate) ;

24

Overview of the PrimeChecker App

« PrimeRunnable determines if a # is prime <<Java Class>>

MainActivi
class PrimeRunnable implements Runnable ({ &M'ffiﬂ}lmw
ainActivity

long mPrimeCandidate; < onCreate(Bundle):void
private final MainActivity mActivity; m initializeViews(Bundle)-void
@ setCount{View):void

@ handleStartButton(View):void
@ statComputations{int)void
PrimeRunnable (MainActivity a, Long pc) @ done()void

. _ . . . _ . @ printin{String)-void
{ mActivity = a; mPrimeCandidate = pc; } & onResume()void

long isPrime(long n) { ... } -mActivity | 0..1
PrimeResult run() { <<Java Class>>
long smallestFactor = ©PrimeRunnable

@ PrimeRunnable(MainActivity.long)
@ isPrime(long,long,long):long

} ... \ @ run():void

isPrime (mPrimeCandidate) ;

The run() hook method invokes isPrime()

Overview of the PrimeChecker App

« Although there may be many PrimeRunnable instances, <<Java Class>>

they will run on a (much) smaller # of threads, which — _f’:_""_“t":?““"“
ainActmty

can be tuned transparently < onCreate(Bundle):void

@ initializeViews(Bundle)-void
@ setCount{View):void

runnable

runnable I = W 3ttt ol W e
runnable
runnable @ printin(String)-void
< onResume()void
runnable T
-mActivity | 0..1

runnable

\ \jpool of worker th\‘e?dg

=<Java Class>=
b '
runnable @ PrimeRunnable

HIAAAAATA

@ PrimeRunnable(MainActivity.long)
® isPrime(long.long.long):long
@ run{)-void

26

Evaluating the
PrimeChecker App

27

Evaluating the PrimeChecker App

« The Java Executor interface enables the # & type of threads to be tuned
transparently wrt the prime checker app logic

new Random() .longs (count, sMAX VALUE - count, sMAX VALUE)
.forEach (randomNumber -> mExecutor.execute
(new PrimeRunnable (this, randomNumber))) ;

Deque Deque Deque
Sub-Task, ;
Sub-Task, 5 Sub-Task; 5
Sub-Task, 4 ! Sub-Task; 4
. o Sub-Task, 4 v
PP S TS /—9 - i \\ - o ~

P
‘\ N \\ 9

\\\\\\\ - . < | K < :

\\\\\\\\ § « \\ \,_ \4\'\7 ~

= 5
\.ipOOI of worker th"e?_(} \.ip 0ol of worker thfe?‘}

5
\.ipOOl of worker th\’e"’f(}

Fixed-sized Thread Pool Variable-sized Thread Pool Work-stealing Thread Pool

28

Evaluating the PrimeChecker App

malleat factor 67
mallest factor 2
smaliest factor &

th zmallest factor 17
ith smallest factor §

st f:

« However, Java Executor has some restrictions

with sl
e with smallest factor

tor 2

ot pr
ot prime with smallest fact

562413871 is prime
inished primality computations

Evaluating the PrimeChecker App

« However, Java Executor has some restrictions, e.g.
« One-way semantics of runnables tightly
couple PrimeRunnable with MainActivity

class PrimeRunnable implements Runnable ({

private final MainActivity mActivity;

public PrimeRunnable (MainActivity activity)
{ mActivity = activity; ... }

public void run() {
. mActivity.done() ;

}

This tight coupling complicates runtime configuration changes

Evaluating the PrimeChecker App

» However, Java Executor has some restrictions, e.g.

* isPrime() tightly coupled w/PrimeRunnable
class PrimeRunnable implements Runnable ({

long isPrime (long n) {
if (n > 3)
for (long factor = 2;
factor <= n / 2; ++factor)
if (n / factor * factor == n)
return factor;
return O;

}

e.g., primality check is applied even if results are computed & complicates improvements

Evaluating the PrimeChecker App

» However, Java Executor has some restrictions, e.g.

« The lack of lifecycle operations on
Java Executor

32

Evaluating the PrimeChecker App

» However, Java Executor has some restrictions, e.g.

« The lack of lifecycle operations on
Java Executor, e.g. Dlocise

« Can't interrupt/cancel running tasks

33

Evaluating the PrimeChecker App

« However, Java Executor has some restrictions, e.g.

« The lack of lifecycle operations on
Java Executor, e.qg.

« Can't handle runtime configuration
changes gracefully

* e.g., must restart processing
from the beginning

34

End of Overview of
Java Executor Interface
(Part 2)

35

