
Java StampedLock:

Usage Considerations

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the structure, functionality

of the Java StampedLock class

• Know the key methods in Java
StampedLock

• Recognize how to apply Java
StampedLock in practice

• Appreciate Java StampedLock
usage considerations

We’ll also compare/contrast StampedLock with other Java synchronizers

3

Java StampedLock
Usage Considerations

4

• StampedLock often much faster than ReentrantReadWriteLock

Java StampedLock Usage Conventions

See www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized

19 readers & 1 writer

Optimistic read mode works very
well with little/no contention

http://www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized

5

• StampedLock often much faster than ReentrantReadWriteLock

Java StampedLock Usage Conventions

See www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized

19 readers & 1 writer

ReentrantReadWriteLock is very slow..

http://www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized

6

• StampedLock often much faster than ReentrantReadWriteLock

Java StampedLock Usage Conventions

See www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized

19 readers & 1 writer

StampedLock with “reading mode” works
better than ReentrantReadWriteLock

http://www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized

7

• StampedLock often much faster than ReentrantReadWriteLock

Java StampedLock Usage Conventions

See www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized

Synchronized statements perform quite well

http://www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized

8

• StampedLock often much faster than ReentrantReadWriteLock

Java StampedLock Usage Conventions

See en.wiktionary.org/wiki/your_mileage_may_vary

However, your mileage may vary!

https://en.wiktionary.org/wiki/your_mileage_may_vary

9

• StampedLock often much faster than ReentrantReadWriteLock

Java StampedLock Usage Conventions

10 readers & 10 writers

See www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized

Optimistic read mode works less
well with more contention

http://www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized

10

• StampedLock often much faster than ReentrantReadWriteLock

Java StampedLock Usage Conventions

10 readers & 10 writers

See www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized

However, ReentrantReadWriteLock is still much slower..

http://www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized

11

• StampedLock often much faster than ReentrantReadWriteLock

Java StampedLock Usage Conventions

10 readers & 10 writers

See www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized

StampedLock & synchronized statements both do quite well

http://www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized

12

• Java StampedLock speedups are
only fully realized under certain
conditions

Java StampedLock Usage Conventions

13

• Java StampedLock speedups are
only fully realized under certain
conditions, e.g.

• Frequency of reads to writes

• Ideally, many more reads
than writes

Java StampedLock Usage Conventions

Shared
Resource

TW

TW

TR

TR

TR

TR

TR

TR

TR

14

• Java StampedLock speedups are
only fully realized under certain
conditions, e.g.

• Frequency of reads to writes

• Duration of read & write
operations

• Ideally, read operations
should be non-trivial or else
locking costs may dominate

Java StampedLock Usage Conventions

Shared
Resource

TW

TW

TR

TR

TR

TR

TR

TR

TR

15

• Java StampedLock speedups are
only fully realized under certain
conditions, e.g.

• Frequency of reads to writes

• Duration of read & write
operations

• “Contention” for the data

• Ideally, many concurrent
readers

Java StampedLock Usage Conventions

Shared
Resource

TW

TW

TR

TR

TR

TR

TR

TR

TR

16

• Java StampedLock speedups are
only fully realized under certain
conditions, e.g.

• Frequency of reads to writes

• Duration of read & write
operations

• “Contention” for the data

• Number of processor cores

• Ideally, many cores

Java StampedLock Usage Conventions

Shared
Resource

TW

TW

TR

TR

TR

TR

TR

TR

TR

17

Java StampedLock Usage Conventions
• StampedLock can be harder to

use than ReentrantReadWriteLock

18

• StampedLock can be harder to
use than ReentrantReadWriteLock

• Many more methods

Java StampedLock Usage Conventions

19

• StampedLock can be harder to
use than ReentrantReadWriteLock

• Many more methods

• More intricate semantics
& usage patterns

Java StampedLock Usage Conventions
void moveIfAtOrigin(double newX,

double newY) {

long stamp = sl.readLock();

try {

while (x == 0.0 && y == 0.0) {

long ws =

sl.tryConvertToWriteLock

(stamp);

if (ws != 0L) {

stamp = ws;

x = newX; y = newY;

break;

} else {

sl.unlockRead(stamp);

stamp = sl.writeLock();

}

}

} finally

{ sl.unlock(stamp); }

...

See www.techevents.online/using-java-8-lambdas-stampedlock-manage-thread-safety

Conditional writes & lock
upgrades are tricky to program

http://www.techevents.online/using-java-8-lambdas-stampedlock-manage-thread-safety

20

• StampedLock can be harder to
use than ReentrantReadWriteLock

• Many more methods

• More intricate semantics
& usage patterns

• Invariants are tricky with
optimistic read locks

Java StampedLock Usage Conventions
class Boooom {

StampedLock mS =

new StampedLock();

int mX = 0;

int mY = 1;

...

// Thread T1

while (true) {

mS.writeLock();

mX++; mY++;

mS.writeUnlock();

}

// Thread T2

do {

stamp = mS.tryOptimisticRead();

z = 1 / (mX - mY);

} while (mS.validate(stamp));

See concurrencyfreaks.blogspot.com/2013/11/stampedlocktryoptimisticread-and.html

http://concurrencyfreaks.blogspot.com/2013/11/stampedlocktryoptimisticread-and.html

21

• StampedLock can be harder to
use than ReentrantReadWriteLock

• Many more methods

• More intricate semantics
& usage patterns

• Invariants are tricky with
optimistic read locks

Java StampedLock Usage Conventions
class Boooom {

StampedLock mS =

new StampedLock();

int mX = 0;

int mY = 1;

...

// Thread T1

while (true) {

mS.writeLock();

mX++; mY++;

mS.writeUnlock();

}

// Thread T2

do {

stamp = mS.tryOptimisticRead();

z = 1 / (mX - mY);

} while (mS.validate(stamp));

Create a StampedLock
to protect two fields

22

• StampedLock can be harder to
use than ReentrantReadWriteLock

• Many more methods

• More intricate semantics
& usage patterns

• Invariants are tricky with
optimistic read locks

• Fields read in optimistic
mode may be inconsistent
since their values can
change unpredictably

Java StampedLock Usage Conventions
class Boooom {

StampedLock mS =

new StampedLock();

int mX = 0;

int mY = 1;

...

// Thread T1

while (true) {

mS.writeLock();

mX++; mY++;

mS.writeUnlock();

}

// Thread T2

do {

stamp = mS.tryOptimisticRead();

z = 1 / (mX - mY);

} while (mS.validate(stamp));

Want to establish the
invariant mX == mY – 1

23

• StampedLock can be harder to
use than ReentrantReadWriteLock

• Many more methods

• More intricate semantics
& usage patterns

• Invariants are tricky with
optimistic read locks

• Fields read in optimistic
mode may be inconsistent
since their values can
change unpredictably

class Boooom {

StampedLock mS =

new StampedLock();

int mX = 0;

int mY = 1;

...

// Thread T1

while (true) {

mS.writeLock();

mX++; mY++;

mS.writeUnlock();

}

// Thread T2

do {

stamp = mS.tryOptimisticRead();

z = 1 / (mX - mY);

} while (mS.validate(stamp));

Java StampedLock Usage Conventions

Since no read lock is held, mX & mY
may be reordered, such that invariant

mX == mY – 1 may not hold

See concurrencyfreaks.blogspot.com/2013/11/stampedlocktryoptimisticread-and.html

http://concurrencyfreaks.blogspot.com/2013/11/stampedlocktryoptimisticread-and.html

24

• StampedLock can be harder to
use than ReentrantReadWriteLock

• Many more methods

• More intricate semantics
& usage patterns

• Invariants are tricky with
optimistic read locks

• Non-reentrant

Java StampedLock Usage Conventions

class SomeComponent {

private StampedLock sl =

new StampedLock();

public void someMethod1() {

long stamp = sl.readLock();

someMethod2();

...

}

private void someMethod2() {

long stamp = sl.readLock();

...

25

• StampedLock is usually the best
choice for readers-writer locks in
Java 8+!

• Despite its complexity & lack of
reentrant semantics

Java StampedLock Usage Conventions

See www.javaspecialists.eu/archive/Issue215.html

http://www.javaspecialists.eu/archive/Issue215.html

26

End of Java StampedLock:
Usage Considerations

