Java StampedLock:
Usage Gonsiderations

Douglas C. Schmidt
@ d.schmidt@uandernilt.edu
- www.dre.vanderhilt.edu/~schmidt

E ’ Institute for Software
Integrated Systems
Vanderbilt University

Nashuille, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

I will adopt Best Bractices
I will adopt Best Prachices
I will adogt Best Prachices
1 will adopt Best Brachice:
I will adopt Best Practices
1 will adopt Best Brachices
] will adopt Best Practices
I will adopt Best Brackices

» Appreciate Java StampedLock 1 will adopt Best Practices
usage considerations I will adogt Best Practices

I will adopt Best Prachices

We'll also compare/contrast StampedLock with other Java synchronizers

Java StampedLock
Usage Considerations

Java StampedLock Usage Conventions

« StampedLock often much faster than ReentrantReadWriteLock
SYNCHRONIZED OPTIMISTIC RWLOCK STAMPED

1996.6 1174 116393 64077
2312.7 1174 116617 47897
PALIRS 1122 117746 65921
22851 11829 115605 73500
21736 11849 118346 32857

2173.78 1167.56 1169414 968504

19 readers & 1 writer

Optimistic read mode works very
well with little/no contention

See www.takipiblog

http://www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized

Java StampedLock Usage Conventions

« StampedLock often much faster than ReentrantReadWriteLock
SYNCHRONIZED OPTIMISTIC RWLOCK STAMPED

1996.6 1174 116393 64077
2312.7 1174 116617 47897
PALIRS 1122 117746 65921
22851 11829 115605 73500
21736 11849 118346 32857

2173.78 1167.56 1169414 268504

19 readers & 1 writer

ReentrantReadWriteLock is very slow..

http://www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized

Java StampedLock Usage Conventions

« StampedLock often much faster than ReentrantReadWriteLock
SYNCHRONIZED OPTIMISTIC RWLOCK STAMPED

1996.6 1174 116393 64077
2312.7 1174 116617 47897
PALIRS 1122 117746 65921
22851 11829 115605 73500
21736 11849 118346 32857

2173.78 1167.56 1169414 268504

19 readers & 1 writer

StampedLock with “reading mode” works
better than ReentrantReadWritelock

See www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-s

http://www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized

Java StampedLock Usage Conventions

« StampedLock often much faster than ReentrantReadWriteLock
SYNCHRONIZED OPTIMISTIC RWLOCK STAMPED

1996.6 1174 116393 64077
2312.7 1174 116617 47897
PALIRS 1122 117746 65921
22851 11829 115605 73500
21736 11849 118346 32857

2173.78 1167.56 1169414 968504

Synchronized statements perform quite well

See www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-s

http://www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized

Java StampedLock Usage Conventions

« StampedLock often much faster than ReentrantReadWriteLock

EPA Fuel Economy Estimates

These estimates reflect new EPA methods beginning with 2008 models.

CITY MPG HIGHWAY MPG

1 8 Estimated 2 5
Annual Fuel Cost
$2,039
Expected range

Expected range baaed 54 15 060 Filsa
for most drivers asesoclﬁo ' ;lm ad for most dnivers
15 to 21 MPG t'9<.00 per.galion 21 to 29 MPG

Combined Fuel Economy

This Vehicle Your actual
mileage will vary
21 depending on how you
v drive and maintain
10 31 your vehicle.

All SUVs

See the FREE Fuel Economy Guide at dealers or www.fueleconomy.gov @

\ However, your mileage may vary!

See en.wiktionary.org/wiki/your mileage may vary

https://en.wiktionary.org/wiki/your_mileage_may_vary

Java StampedLock Usage Conventions

« StampedLock often much faster than ReentrantReadWriteLock

RWLOCK STAMPED SYNCHRONIZED OPTIMISTIC
1960.8 165.1 1774 387.9
14736 1m3 1921 3828
2119.7 2168 1733 403.6
27722 2219 2054 4039
PIPAR: 1893 181.2 3942

2209.54 180.88 185.88

10 readers & 10 writers

Optimistic read mode works less
well with more contention

See www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized

http://www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized

Java StampedLock Usage Conventions

« StampedLock often much faster than ReentrantReadWriteLock

RWLOCK STAMPED SYNCHRONIZED OPTIMISTIC
1960.8 165.1 1774 387.9
14736 1m3 1921 3828
2119.7 2168 1733 403.6
27722 2219 2054 4039
PIPAR: 1893 181.2 3942

2209.54 180.88 185.88

10 readers & 10 writers

However, ReentrantReadWritelock is still much slower..

See www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized

http://www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized

Java StampedLock Usage Conventions

« StampedLock often much faster than ReentrantReadWriteLock

RWLOCK STAMPED SYNCHRONIZED OPTIMISTIC
1960.8 165.1 1774 387.9
14736 1m3 1921 3828
2119.7 2168 1733 403.6
27722 2219 2054 4039
PIPAR: 1893 181.2 3942

2209.54 180.88 185.88

10 readers & 10 writers

StampedLock & synchronized statements both do quite well

See www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized

http://www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized

Java StampedLock Usage Conventions

 Java StampedLock speedups are
only fully realized under certain
conditions

12

Java StampedLock Usage Conventions

» Java StampedLock speedups are | _>§
only fully realized under certain —>§ Ty
conditions, e.g. Tw P g
 Frequency of reads to writes (Tpia

« Ideally, many more reads S
than writes

13

Java StampedLock Usage Conventions

» Java StampedLock speedups are | _>§
only fully realized under certain —>§ Ty
conditions, e.g. w2 _ ==

« Duration of read & write
operations

« Ideally, read operations
should be non-trivial or else
locking costs may dominate

14

Java StampedLock Usage Conventions

» Java StampedLock speedups are | _>§
only fully realized under certain —>§ Ty
conditions, e.g. Tw= = =2

e “Contention” for the data

 Ideally, many concurrent
readers

15

Java StampedLock Usage Conventions

» Java StampedLock speedups are | é
only fully realized under certain —>§ Ty
conditions, e.qg. w —>

« Number of processor cores
 Ideally, many cores

16

Java StampedLock Usage Conventions

« StampedLock can be harder to
use than ReentrantReadWriteLock

17

Java StampedLock Usage Conventions

« StampedLock can be harder to TR
use than ReentrantReadWriteLock ® StampedLock
& StampedLock()
¢ Many more methOdS @ writeLock():long

@ tryWriteLock():long

@ tny\WiteLock({long, TimelUnit):long
@ writeLockinterruptibly():long

@ readLock():long

@ tryReadlLock():long

@ tryReadLock(long, TimeUnit):long
@ readLockinterruptibly():long

@ tryOptimisticRead{):long

@ validate(long):boolean

<< Java Class=>
{© ReentrantReadWriteLock

@ ReentrantReadWriteLock() @ unlockWrite({long):void

@ ReentrantReadWriteLock{boolean) @ unlockRead(long):void

@ writeLock():WriteLock @ unlock(long)void

@ readlLock()-ReadLock @ tryConvertToWriteLock(long):long

o isFair()-boolean

@ getReadLockCount():int

@ isVWriteLocked()-boolean

@ isWriteLockedByCurrentThread():boolean
@ getWriteHoldCount():int

@ getReadHoldCount():int

@ tryConvert ToReadLock{long):long

@ tryConvertToOptimisticRead(long):long
@ tryUnlockWrite():-boolean

@ tryUnlockRead():boolean

@ isWriteLocked():boolean

& hasQueuedThreads():boolean . 'SREEdLDCkEdU’:bDDl?E”

& hasQueuedThread(Thread)-boolean @ getReadLockCount(}int

o getQueuelLength():int @ toString()

@ hasWaiters(Condition):boolean @ asReadlock():Lock

@ getWaitQueuelLength(Condition)-int @ asWriteLock():Lock

@ toString() o asReadWriteLock():ReadWriteLock

18

Java StampedLock Usage Conventions

. StampedLock can be harder to void moveIfAtOrigin (double newX,

use than ReentrantReadWriteLock double newY) {
long stamp = sl.readLock () ;
try {
* More intricate semantics while (x == 0.0 & y == 0.0) {
& usage patterns long ws =

sl. tryConvertToWriteLock

(stamp) ;

if (ws '= OL) {

stamp = ws;
X = newX, y = newyY;
Conditional writes & lock break;
upgrades are tricky to program } else {
sl.unlockRead (stamp) ;
stamp = sl.writelock() ;

}

}
} finally

{ sl.unlock(stamp); }

See www.techevents.online/using-java-8-lambdas-stampedlock-manage-thread-safety

http://www.techevents.online/using-java-8-lambdas-stampedlock-manage-thread-safety

Java StampedLock Usage Conventions

« StampedLock can be harder to class Boooom {

use than ReentrantReadWriteLock StampedLock mS =
new StampedLock() ;

int mX 0;
int mY 1;

. Inv_arl_an_ts are tricky with // Thread T1
optimistic read locks while (true) {

mS .writeLock () ;
mX++; mY++;
mS .writeUnlock () ;

}

// Thread T2

do {
stamp = mS.tryOptimisticRead() ;
z =1/ (mX - mY);

} while (mS.validate(stamp)) ;

See concurrencyfreaks.blogspot.com/2013/11/stampedlocktryoptimisticread-and.html

http://concurrencyfreaks.blogspot.com/2013/11/stampedlocktryoptimisticread-and.html

Java StampedLock Usage Conventions

« StampedLock can be harder to
use than ReentrantReadWriteLock

« Invariants are tricky with
optimistic read locks

class Boooom {

StampedLock mS =
new StampedLock () ;

int mX 0;

int mY 1;

Create a StampedLock
to protect two fields

// Thread T1

while (true) {
mS .writeLock () ;
mX++; mY++;
mS .writeUnlock () ;

}

// Thread T2

do {
stamp = mS.tryOptimisticRead() ;
z =1/ (mX - mY);

} while (mS.validate(stamp)) ;

21

Java StampedLock Usage Conventions

« StampedLock can be harder to class Boooom {

use than ReentrantReadWriteLock StampedLock mS =
new StampedLock() ;

int mX = 0;
int mY = 1;
_ _ _ Want to establish the
. In\é_arl_al:cl_ts aredtlrchT(y with // Thread T1 invariant mxX == mYy — 1
optimistic read locks while (true) {
* Fields read in optimistic mS.writeLock () ;
mode may be inconsistent mX++; mY++;
since their values can mS.writeUnlock () ;
change unpredictably }

// Thread T2

do {
stamp = mS.tryOptimisticRead() ;
z =1/ (mX - mY);

} while (mS.validate(stamp)) ;

22

Java StampedLock Usage Conventions

« StampedLock can be harder to
use than ReentrantReadWriteLock

« Invariants are tricky with
optimistic read locks

* Fields read in optimistic
mode may be inconsistent
since their values can
change unpredictably

Since no read lock is held, mX & mY
may be reordered, such that invariant

class Boooom {

StampedLock mS =
new StampedLock() ;

int mX 0;

int mY 1;

// Thread T1

while (true) {
mS .writeLock () ;
mX++; mY++;
mS .writeUnlock () ;

}

// Thread T2

do {
stamp = mS.tryOptimisticRead() ;
z =1/ (mX - mY);

mX == mY — 1 may not hold

} while (mS.validate(stamp))

See concurrencyfreaks.blogspot.com/2013/11/stampedlocktryoptimisticread-and.html

http://concurrencyfreaks.blogspot.com/2013/11/stampedlocktryoptimisticread-and.html

Java StampedLock Usage Conventions

« StampedLock can be harder to
use than ReentrantReadWriteLock

 Non-reentrant

class SomeComponent {
private StampedLock sl =
new StampedLock() ;

someMethod2

private void someMethod2 () {
long stamp = sl.readLock

24

Java StampedLock Usage Conventions

« StampedLock is usually the best
choice for readers-writer locks in
Java 8+!

« Despite its complexity & lack of
reentrant semantics

Class StampedLock

java.lang.Object
java.util.concurrent.locks.StampedLock

All Implemented Interfaces:

Serializable

public class StampedLock
extends Object
implements Serializable

A capability-based lock with three modes for controlling read/write access.
The state of a StampedLock consists of a version and mode. Lock acquisition
methods return a stamp that represents and controls access with respect to a
lock state; "try" versions of these methods may instead return the special
value zero to represent failure to acquire access. Lock release and conversion
methods require stamps as arguments, and fail if they do not match the state
of the lock. The three modes are

« Writing. Method writeLock() possibly blocks waiting for exclusive
access, returning a stamp that can be used in method
unlockWrite(long) to release the lock. Untimed and timed versions of
tryWritelLock are also provided. When the lock is held in write mode, no
read locks may be obtained, and all optimistic read validations will fail.

« Reading. Method readLock() possibly blocks waiting for non-exclusive
access, returning a stamp that can be used in method
unlockRead (long) to release the lock. Untimed and timed versions of
tryReadLock are also provided.

« Optimistic Reading. Method tryOptimisticRead () returns a non-zero
stamp only if the lock is not currently held in write mode. Method
validate(long) returns true if the lock has not been acquired in write
mode since obtaining a given stamp. This mode can be thought of as an
extremely weak version of a read-lock, that can be broken by a writer at
any time. The use of optimistic mode for short read-only code segments

See www.javaspecialists.eu/archive/Issue215.html

http://www.javaspecialists.eu/archive/Issue215.html

End of Java StampedLock:
Usage Considerations

26

