Java StampedLock:
Example Application

Douglas C. Schmidt
@ d.schmidt@uandernilt.edu
- www.dre.vanderhilt.edu/~schmidt

E ’ Institute for Software
Integrated Systems
Vanderbilt University

Nashuille, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Recognize how to apply Java StampedLock in practice

class Point {
void moveIfAtOrigin (double newX, double newY) {
long stamp = sl.readLock()
try
while (x == 0.0 && y == 0.0) {
long ws = sl.tryConvertToWriteLock (stamp) ;
if (ws '= OL) {
stamp = ws;
X = newX; y = newy;
break;
} else {
sl.unlockRead (stamp) ;
stamp = sl.writelock();

Applying Java Stamped
Lock in Practice

Applying Java StampedLock in Practice

* The Point class shows how to program with StampedLock

class Point {

private double x;
private double y;

private final StampedlLock sl =
new StampedLock() ;

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/StampedLock.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/StampedLock.html

Applying Java StampedLock in Practice

* The Point class shows how to program with StampedLock

class Point { <= Maintains two-dimensional points

private double x;
private double y;

private final StampedlLock sl =
new StampedLock() ;

Applying Java StampedLock in Practice

* The Point class shows how to program with StampedLock

class Point ({ r State that must be protected

private double x;
private double y;

private final StampedlLock sl =
new StampedLock() ;

Applying Java StampedLock in Practice

* The Point class shows how to program with StampedLock

class Point {

private double x;

private double y; StampedLock that does

the protecting

private final StampedLock sl =
new StampedLock() ;

Applying Java StampedLock:
Writing Mode

Applying Java StampedLock: Writing Mode

 Performing an exclusive write with a StampedLock

class Point {
This method atomically moves
r a point to a new location
void move (double deltaX,
double deltaY) {
long stamp = sl.writelock() ;
try {
x += deltaX;
y += deltayY;
} finally {
sl.unlockWrite (stamp) ;

}
}

Applying Java StampedLock: Writing Mode

 Performing an exclusive write with a StampedLock

class Point {

void move (double deltaX,
double deltaY) {
long stamp = sl.writeLock() ;

= | t
X += deltaX; Acquire a write lock
y += deltayY; =
} finally {
sl.unlockWrite (stamp) ;
} q ooV YV
} - NN vN-NrE " H-Fol JoRrRsPod

iyl
5*-9060‘)%-
[N N N-N NN NN N QR)

10

Applying Java StampedLock: Writing Mode

 Performing an exclusive write with a StampedLock

class Point {

void move (double deltaX,
double deltaY) {
long stamp = sl.writelock() ;
try {

x += deltaX; -
' 4@ Modify the state
y += deltaY¥; Y
} finally {
sl.unlockWrite (stamp) ;
}

}

11

Applying Java StampedLock: Writing Mode

 Performing an exclusive write with a StampedLock

class Point {

void move (double deltaX,
double deltaY) {
long stamp = sl.writelLock()
try {
X += deltaX;
y += deltaY¥;
} finally ({
sl.unlockWrite (stamp) ;

} | -
} Release the write lock

12

Applying Java StampedLock:
Optimisitic & Reading Mode

13

Applying Java StampedLock: Optimisitic & Reading Mode
« Performing a optimistic read with a StampedLock [:—

class Point ({ r A read-only method

double distanceFromOrigin() {
long stamp = sl.tryOptimisticRead() ;
double currX = x, currY =y,
if (!'sl.validate(stamp)) {
stamp = sl.readLock() ;
try {
currX = X; currY = y;,
} finally
{ sl.unlockRead(stamp); }

}

return Math.sqrt (currX * currX + currY * curryY);

}

14

Applying Java StampedLock: Optimisitic & Reading Mode

« Performing a optimistic read with a StampedLock

class Point
{ Attempt to get an

double distanceFromOrigin() { r observation” stamp

long stamp = sl.tryOptimisticRead() ;
double currX = x, currY =y,
if (!'sl.validate(stamp)) {
stamp = sl.readLock() ;
try {
currX = xX; currY = y;
} finally
{ sl.unlockRead(stamp) ; }
}

return Math.sqrt (currX * currX + currY * curryY);

}

15

Applying Java StampedLock: Optimisitic & Reading Mode

« Performing a optimistic read with a StampedLock

class Point {

double distanceFromOrigin () {
long stamp = sl.tryOptimisticRead() ;
double currX = x, currY = y;
if (!'sl.validate(stamp)) {
stamp = sl.readLock() ;
try {
currX = xX; currY = y;
} finally
{ sl.unlockRead(stamp); }

“Optimistically” read
state into local variables

}

return Math.sqrt (currX * currX + currY * curryY);

}

Code using optimistic reading mode typically copies the values of
fields & holds them in local variables for use after they are validated

Applying Java StampedLock: Optimisitic & Reading Mode

« Performing a optimistic read with a StampedLock

class Point {

double distanceFromOrigin () {
long stamp = sl.tryOptimisticRead() ;
double currX = x, currY =y,
if (!'sl.validate(stamp)) {
stamp = sl.readLock() ;

try { Check if another thread acquired
currX = x; currY = y; thelockforwriting after earlier
} finally call to tryOptimisticRead()

{ sl.unlockRead(stamp); }
}

return Math.sqrt (currX * currX + currY * curryY);

}

17

Applying Java StampedLock: Optimisitic & Reading Mode

« Performing a optimistic read with a StampedLock

class Point {

double distanceFromOrigin () {
long stamp = sl.tryOptimisticRead() ;
double currX = x, currY =y,

if (!sl.validate(stamp)) ({ If write lock occurred then
stamp = sl.readLock(); 4mmm acquire a read lock (blocking
try { as long as the write lock is
currX = x; currY = y; held by another thread)
} finally

{ sl.unlockRead(stamp); }
}

return Math.sqrt (currX * currX + currY * curryY);

}

18

Applying Java StampedLock: Optimisitic & Reading Mode

« Performing a optimistic read with a StampedLock

class Point {

double distanceFromOrigin () {
long stamp = sl.tryOptimisticRead() ;
double currX = x, currY =y,
if (!'sl.validate(stamp)) {
stamp = sl.readLock() ;

tr
: ' ’ via “pessimistic” reads
} finally

{ sl.unlockRead(stamp); }
}

return Math.sqrt (currX * currX + currY * curryY);

}

19

Applying Java StampedLock: Optimisitic & Reading Mode

« Performing a optimistic read with a StampedLock

class Point {

double distanceFromOrigin () {
long stamp = sl.tryOptimisticRead() ;
double currX = x, currY =y,
if (!'sl.validate(stamp)) {
stamp = sl.readLock() ;

try {

currX = x; currY = y; Release read lock
} finally

{ sl.unlockRead (stamp); }
}

return Math.sqrt (currX * currX + currY * curryY);

}

20

Applying Java StampedLock: Optimisitic & Reading Mode

« Performing a optimistic read with a StampedLock

class Point {

double distanceFromOrigin () {
long stamp = sl.tryOptimisticRead() ;
double currX = x, currY =y,
if (!'sl.validate(stamp)) {
stamp = sl.readLock() ;
try {
currX = xX; currY = y;
} finally
{ sl.unlockRead(stamp); }

} 4= No lock to release if validate() succeeded
return Math.sqrt (currX * currX + currY * curryY);

}

21

Applying Java StampedLock: Optimisitic & Reading Mode

« Performing a optimistic read with a StampedLock

class Point {

double distanceFromOrigin () {
long stamp = sl.tryOptimisticRead() ;
double currX = x, currY =y,
if (!'sl.validate(stamp)) {
stamp = sl.readLock() ;
try {
currX = xX; currY = y;
} finally

{ sl.unlockRead(stamp); } r Do computation with

the copied values

}

return Math.sgrt (currX * currX + currY * currY);

}

22

Applying Java Stamped
Lock: Conditional Write

23

Applying Java StampedLock: Conditional Write

« Performing a conditional write with a StampedLock

class Point ({ r Move a point only if it's current at the origin

void moveIfAtOrigin (double newX, double newY) {
long stamp = sl.readLock() ;
try {
while (x == 0.0 && y == 0.0) {
long ws = sl.tryConvertToWriteLock (stamp) ;
if (ws != OL) {
stamp = ws;
X = newX; y = newyY;
break;
} else {
sl.unlockRead (stamp) ;
stamp = sl.writelock()

24

Applying Java StampedLock: Conditional Write

 Performing a conditional write with a StampedLock

class Point {

void moveIfAtOrigin (double newX, double newY) {
long stamp = sl.readLock(); - Acquire a read lock
try
while (x == 0.0 && y == 0.0) {
long ws = sl.tryConvertToWriteLock (stamp) ;
if (ws !'= OL) {
stamp = ws;
X = newX; y = newy;
break;
} else {
sl.unlockRead (stamp) ;
stamp = sl.writeLock();

25

Applying Java StampedLock: Conditional Write

 Performing a conditional write with a StampedLock

class Point {

void moveIfAtOrigin (double newX, double newY) {
long stamp = sl.readLock()

try - Check whether x &
while (x == 0.0 && y == 0.0) { y are at the origin
long ws = sl.tryConvertToWriteLock (stamp) ;
if (ws !'= OL) {

stamp = ws;
X = newX; y = newy;
break;

} else {
sl.unlockRead (stamp) ;
stamp = sl.writelock()

This loop only executes at most twice!

Applying Java StampedLock: Conditional Write

 Performing a conditional write with a StampedLock

class Point {

void moveIfAtOrigin (double newX, double newY) {

long stamp = sl.readLock() ; Try to upgrade
try to a write lock
while (x == 0.0 && y == 0.0) { w/out blocking
long ws = sl.tryConvertToWriteLock (stamp) ;
if (ws != OL) {

stamp = ws;
X = newX; y = newy;
break;

} else {
sl.unlockRead (stamp) ;
stamp = sl.writelock()

tryConvertToWriteLock() atomically releases the read lock
& acquires the write lock if there are no other readers

Applying Java StampedLock: Conditional Write

 Performing a conditional write with a StampedLock

class Point {

void moveIfAtOrigin (double newX, double newY) {
long stamp = sl.readLock() ;
try
while (x == 0.0 && y == 0.0) {
long ws = sl.tryConvertToWriteLock (stamp) ;
if (ws != OL) { <mmm Upgrade succeeded w/out blocking!
stamp = ws;
X = newX; y = newy;
break;
} else {
sl.unlockRead (stamp) ;
stamp = sl.writelock()

28

Applying Java StampedLock: Conditional Write

 Performing a conditional write with a StampedLock

class Point {

void moveIfAtOrigin (double newX, double newY) {
long stamp = sl.readLock()
try
while (x == 0.0 && y == 0.0) {
long ws = sl.tryConvertToWriteLock (stamp) ;
if (ws !'= OL) {
stamp = ws;
- - Update stamp &

X = newX; y = modify Point’s state
break;

} else {
sl.unlockRead (stamp) ;
stamp = sl.writeLock();

29

Applying Java StampedLock: Conditional Write

 Performing a conditional write with a StampedLock

class Point {

void moveIfAtOrigin (double newX, double newY) {
long stamp = sl.readLock() ;
try
while (x == 0.0 && y == 0.0) {
long ws = sl.tryConvertToWriteLock (stamp) ;
if (ws !'= OL) {
stamp = ws;
X = newX; y = newy;
break; 4@ Exit the loop
} else {
sl.unlockRead (stamp) ;
stamp = sl.writelock()

30

Applying Java StampedLock: Conditional Write

 Performing a conditional write with a StampedLock

class Point {

void moveIfAtOrigin (double newX, double newY) {
long stamp = sl.readLock()
try
while (x == 0.0 && y == 0.0) {
long ws = sl.tryConvertToWriteLock (stamp) ;
if (ws !'= OL) {
stamp = ws;
X = newX; y = newyY;
break;

Upgrade failed, so release the
read lock & block until the write
lock acquired exclusively

} else {
sl.unlockRead (stamp) ; J
stamp = sl.writeLock();

The x & y field values may change between unlockRead() & writeLock()!

Applying Java StampedLock: Conditional Write

 Performing a conditional write with a StampedLock

class Point {

void moveIfAtOrigin (double newX, double newY) {
long stamp = sl.readLock()

try
while (x == 0.0 && y == 0.0) {

long ws = sl.tryConvertToWriig:ck(stamp);

1t (ws 1= OL) { Must retest loop condition since x &
stamp = ws; y field values may change between
X = newX; y = newY; ysjockRead() & writeLock()!
break;

} else {

sl.unlockRead (stamp) ;
stamp = sl.writeLock();

32

Applying Java StampedLock: Conditional Write

 Performing a conditional write with a StampedLock

class Point {

void moveIfAtOrigin (double newX, double newY) {
long stamp = sl.readLock()
try
while (x == 0.0 && y == 0.0) {
long ws = sl.tryConvertToWriteLock (stamp) ;

if (ws != OL) { This conversion will always
stamp = ws; succeed since stamp is now
X = newX; y = newY; a write lock
break;

} else {

sl.unlockRead (stamp) ;
stamp = sl.writeLock();

33

Applying Java StampedLock: Conditional Write

 Performing a conditional write with a StampedLock

class Point {

void moveIfAtOrigin (double newX, double newY) {
long stamp = sl.readLock()

try {
while (x == 0.0 & y == 0.0) {

stamp = ws;

stamp = sl.writeLock();

}

}
} finally { sl.unlock(stamp); }

}

Release the
appropriate lock

34

End of Java Stamped
Lock: Example Application

35

