Java StampedLock:
Structure & Functionality

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderbilt University
Nashuille, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand the structure &
functionality of the Java Stamped
Lock class

Class StampedLock

java.lang.Object
java.util.concurrent.locks.StampedLock

All Implemented Interfaces:

Serializable

public class StampedLock
extends Object
implements Serializable

A capability-based lock with three modes for controlling read/write access. The
state of a StampedLock consists of a version and mode. Lock acquisition methods
return a stamp that represents and controls access with respect to a lock state;
"try" versions of these methods may instead return the special value zero to
represent failure to acquire access. Lock release and conversion methods require
stamps as arguments, and fail if they do not match the state of the lock. The three
modes are:

» Writing. Method writeLock() possibly blocks waiting for exclusive access,
returning a stamp that can be used in method unlockWrite(long) to
release the lock. Untimed and timed versions of tryWriteLock are also
provided. When the lock is held in write mode, no read locks may be
obtained, and all optimistic read validations will fail.

« Reading. Method readLock() possibly blocks waiting for non-exclusive
access, returning a stamp that can be used in method unlockRead(long) to
release the lock. Untimed and timed versions of tryReadLock are also
provided.

« Optimistic Reading. Method tryOptimisticRead () returns a non-zero
stamp only if the lock is not currently held in write mode. Method
validate(long) returns true if the lock has not been acquired in write
mode since obtaining a given stamp. This mode can be thought of as an
extremely weak version of a read-lock, that can be broken by a writer at any
time. The use of optimistic mode for short read-only code segments often

Overview of Java
StampedLlLock

Overview of Java StampedLock

* Provides a readers-writer
implementation in Java 8+

Class StampedLock

java.lang.Object
java.util.concurrent.locks.StampedLock

All Implemented Interfaces:

Serializable

public class StampedLock
extends Object
implements Serializable

A capability-based lock with three modes for controlling read/write access. The
state of a StampedLock consists of a version and mode. Lock acquisition methods
return a stamp that represents and controls access with respect to a lock state;
"try" versions of these methods may instead return the special value zero to
represent failure to acquire access. Lock release and conversion methods require
stamps as arguments, and fail if they do not match the state of the lock. The three
modes are:

» Writing. Method writeLock() possibly blocks waiting for exclusive access,
returning a stamp that can be used in method unlockWrite(long) to
release the lock. Untimed and timed versions of tryWriteLock are also
provided. When the lock is held in write mode, no read locks may be
obtained, and all optimistic read validations will fail.

« Reading. Method readLock() possibly blocks waiting for non-exclusive
access, returning a stamp that can be used in method unlockRead(long) to
release the lock. Untimed and timed versions of tryReadLock are also
provided.

« Optimistic Reading. Method tryOptimisticRead () returns a non-zero
stamp only if the lock is not currently held in write mode. Method
validate(long) returns true if the lock has not been acquired in write
mode since obtaining a given stamp. This mode can be thought of as an
extremely weak version of a read-lock, that can be broken by a writer at any
time. The use of optimistic mode for short read-only code segments often

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/StampedLock.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/StampedLock.html

Overview of Java StampedLock

* Provides a readers-writer
implementation in Java 8+

« Much more efficient & scalable
than ReentrantReadWriteLock

Class ReentrantReadWriteLock

java.lang.Object
java.util.concurrent.locks.ReentrantReadWriteLock

All Implemented Interfaces: P A v,
Serializable, ReadWriteLock giime e | "TAXI
=) | =
—— h

public class ReentrantReadWriteLock
extends Object
implements ReadWritelLock, Serializable

An implementation of ReadWriteLock supporting similar
semantics to ReentrantLock.

This class has the following properties:
= Acquisition order
This class does not impose a reader or writer preference

ordering for lock access. However, it does support an
optional fairness policy.

Class StampedLock

java.lang.Object
java.util.concurrent.locks.StampedLock

All Implemented Interfaces:

Serializable

public class StampedLock
extends Object
implements Serializable

A capability-based lock with three modes for controlling read/write access. The
state of a StampedLock consists of a version and mode. Lock acquisition methods
return a stamp that represents and controls access with respect to a lock state;
"try" versions of these methods may instead return the special value zero to
represent failure to acquire access. Lock release and conversion methods require
stamps as arguments, and fail if they do not match the state of the lock. The three
modes are:

» Writing. Method writeLock() possibly blocks waiting for exclusive access,
returning a stamp that can be used in method unlockWrite(long) to
release the lock. Untimed and timed versions of tryWriteLock are also
provided. When the lock is held in write mode, no read locks may be
obtained, and all optimistic read validations will fail.

« Reading. Method readLock() possibly blocks waiting for non-exclusive
access, returning a stamp that can be used in method unlockRead(long) to
release the lock. Untimed and timed versions of tryReadLock are also
provided.

« Optimistic Reading. Method tryOptimisticRead () returns a non-zero
stamp only if the lock is not currently held in write mode. Method
validate(long) returns true if the lock has not been acquired in write
mode since obtaining a given stamp. This mode can be thought of as an
extremely weak version of a read-lock, that can be broken by a writer at any
time. The use of optimistic mode for short read-only code segments often

Overview of Java StampedLock

« Provides a readers-writer public class StampedLock
implementation in Java 8+ implements java.io.Serializable {

Does not implement ReadWriteLock interface,
does not use the AbstractQueuedSynchronizer
framework, & does not apply Bridge pattern

Overview of Java StampedLock

* Provides three locking modes public class StampedLock
implements java.io.Serializable ({

These modes go above & beyond what’s supported in ReentrantReadWriteLock

Overview of Java StampedLock

 Provides three locking modes public class StampedLock
. Writing implements java.io.Serializable {

public long writelLock() { ... }
public long tryWritelLock() { ... }
public long tryWriteLock

(long time,
TimeUnit unit) {...}

22 £ %o = &
j = z = € 7

NN N-N~rE " E-HFolN FoRryePo)

P 'ﬂ.
r'aeaa@mamanma_
oD H O W

Writing mode is “pessimistic” since it assumes contention may occur, So no
other thread can acquire the lock while it's held, i.e., a write lock is “exclusive”

Overview of Java StampedLock

 Provides three locking modes public class StampedLock
implements java.io.Serializable ({

« Reading public long readLock() { ... }

public long tryReadLock() { ... }
public long tryReadLock

(long time,
TimeUnit unit) {...}

Reading mode is “pessimistic” since it assumes contention may occur, though
other threads can acquire the lock for reading, i.e., a read lock is “shared”

Overview of Java StampedLock

 Provides three locking modes public class StampedLock
implements java.io.Serializable ({

public long tryOptimisticRead()
« Optimistic { ... 1
reading
public boolean validate

(long stamp) { ... }

This reading mode is “optimistic” since it assumes contention will not occur, so
other threads can obtain the lock optimistically, i.e., the lock is “probabilistic”

Overview of Java StampedLock

« It's also possible to convert a public class StampedLock
lock from one mode to another implements java.io.Serializable {

public long
tryToConvertToWriteLock
(long stamp) { ... }

public long
tryToConvertToReadlLock
(long stamp) { ... }

public long
tryToConvertToOptimisticRead
(long stamp) { ... }

11

End of Java StampedLock:
Structure & Functionality

12

