Java ReentrantReadWriteLock:
Usage Gonsiderations

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderbilt University
Nashuille, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

I will adopt Best Bractices
I will adopt Best Prachices
I will adogt Best Prachices
1 wiell adopt Best Crachice:
I will adopt Best Practices
1 will adopt Best Brachices
] will adopt Best Practices

I will adopt Best CGrachices

] will adopt Best Practices

« Appreciate Java ReentrantReadWrite [will adogt Best Practices
Lock usage considerations L will adopl Dest Frachices

ReentrantReadWriteLock
Usage Considerations

ReentrantReadWriteLock Usage Con5|derat|ons

« ReentrantReadWriteLock enables
higher levels of concurrency when
accessing shared “read-only” data
compared with a ReentrantLock

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReadWriteLock.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReadWriteLock.html

ReentrantReadWriteLock Usage Con5|derat|ons

« ReentrantReadWriteLock enables
higher levels of concurrency when
accessing shared “read-only” data
compared with a ReentrantLock

« May improve performance if data
are read from much more often than
written to on multi-core systems

ReentrantReadWriteLock Usage ConS|derat|ons

« However, ReentrantReadWriteLock
has several limitations

See javaspecialists.eu/talks/jfokus13/PhaserAndStampedLock.pdf

http://javaspecialists.eu/talks/jfokus13/PhaserAndStampedLock.pdf
file://///localhost/upload.wikimedia.org/wikipedia/commons/4/43/Punishment_sisyph.jpg

ReentrantReadWriteLock Usage Considerations

« However, ReentrantReadWriteLock
has several limitations

« Both read & write locks are
“pessimistic” & thus assume
contention will always occur

ReentrantReadWriteLock Usage Considerations

« However, ReentrantReadWriteLock
has several limitations

« Both read & write locks are
“pessimistic” & thus assume
contention will always occur

 In contrast, StampedLock has
an “optimistic” read mode &
generally performs better

See upcoming lesson on “Java StampedLocK’

ReentrantReadWriteLock Usage Con5|derat|ons

« However, ReentrantReadWriteLock
has several limitations

« Can starve readers or writers,
depending on their priority

See en.wikipedia.org/wiki/Readers-writer lock

http://en.wikipedia.org/wiki/Readers-writer_lock

ReentrantReadWriteLock Usage Con5|derat|ons

« However, ReentrantReadWriteLock
has several limitations

« Can starve readers or writers,
depending on their priority

« Java 5 (readers priority) & 6+
(writers priority) semantics differ

See www.javaspecialists.eu/archive/Issuel165.html

http://www.javaspecialists.eu/archive/Issue165.html

ReentrantReadWriteLock Usage Con5|derat|ons

« However, ReentrantReadWriteLock pus
has several limitations :

« Can be tedious & error-prone
to program

11

ReentrantReadWriteLock Usage Considerations

« However, ReentrantReadWriteLock

has several limitations Acquiring
a lock &

then not
releasing
it

. I . . /) .

- Can be tedious & error-prone Releasing a2y
a lock Common a resource
to program that was Traps & N w/out |

never
acquired

Pitfalls holding a
lock for it

Holding a
lock for a
long time
without
needing it

See earlier lessons on “Java ReentrantLock” & “Java Semaphore’

ReentrantReadWriteLock Usage Considerations

 Profiling is essential to see if a
ReentrantReadWriteLock is suited
for a particular use-case

Selecting Locking Primitives for Parallel Programs

Paul E. McKenney (pmckenne@us.ibm.com)
Sequent Computer Systems, Inc.

Abstract

The only reason to parallelize a program is to gain
performance. However, the synchronization primitives
used by parallel programs can consume execessive
memory bandwidths, can be subject to memory laten-
cies, consume excessive memory, and result in unfair
access or even starvation. These problems can over-
whelm the performance benefits of parallel exeention.
Therefore, it is necessary to understand these perfor-
mance implieations of synchronization primitives in
addition to their correctness, liveness, and safety prop-
erties.

This paper presents a pattern language to assist
yoll in selecting synchronization primitives for parallel
programs. This pattern language assumes yon have
already chosen a locking design, perhaps by using a
locking design pattern language [McK96].

1 Overview

A lock-based parallel program uses synchronization
primitives to define critical sections of code in which
only one CPU or thread may execute concurrently.

For example, Figure 1 presents a fragment of par-
allel code to search and update a linear list. In this
C-code example, the 1tnext field links the individ-
ual elements together, the 1t key fleld contains the
search key, and the 1t data field contains the data
corresponding to that key.

The section of code between the 8_LOCK() and the
S_UNLOCK() primitives is a critical section. Only one
CPU at a time may be executing in this critical sec-
tion.

A poor choice of locking primitive can result in ex-
cessive overhead and poor performance under heavy
load. The pattern language in this paper will help
you determine what kind of locking primitive to use.
This paper considers a few straightforward test-and-
set, quened, and reader /writer locks, which will handle
most situations.

This paper presents the implementation level coun-
terpart to a locking design pattern language [McK96].

Section 2 therefore gives an overview of locking de-
sign patterns. Section 3 describes the forces common
to all of the patterns. Section 4 overviews contexts
in which these patterns are useful. Section 5 presents
several indexes to the patterns. Section 6 presents the
patterns themsel ves.

2 Overview of Locking Design
Patterns and Forces

Although design and implementation are often treated
as separate activities, they are almost always deeply
intertwined. Therefore, this section presents a brief
overview of design-level patterns and the forces that
act on them.

2.1 Overview of Locking Design Pat-
terns

This paper refers to the following locking design pat-
ferns:

Sequential Program: A design with no parallelism,
offering none of the benefits or problems associ-
ated with parallel programs.

Code Locking: A design where locks are associated
with specific sections of code. In object-oriented
designs, code-locking locks classes rather than in-
stances of classes.

Data Locking: A design where locks are associated
with specific data structures. In object-oriented
designs, data-locking locks instances rather than
classes.

Data Ownership: A design where each CPU or
thread “owns"™ its share of the data. This means
that a CPU does not need to use any locking
primitives to access its own data, but must use
some special communications mechanism to ac-
cess other CPUs" or threads’ data !

!The Active Object pattern [Sch96] describes an object-

See www?2.rdrop.com/~paulmck/scalability/paper/mutexprimpat.pdf

http://www2.rdrop.com/~paulmck/scalability/paper/mutexprimpat.pdf

ReentrantReadWriteLock Usage Considerations

 Profiling is essential to see if a
ReentrantReadWriteLock is suited
for a particular use-case

« ReentrantReadWriteLock’s overhead
is nearly always greater than any
benefits it provides..

See www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized

http://www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized

End of Java Reentrant
ReadWriteLock: Usage
Considerations

15

