
Java ReentrantReadWriteLock:

Example Application

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the structure &

functionality of the Java
ReentrantReadWriteLock class

• Know the key methods in Java
ReentrantReadWriteLock

• Recognize how to apply Java
ReentrantReadWriteLock in
practice

class SimpleAtomicLong {

private long mValue;

private ReentrantReadWriteLock

mRWLock = new

ReentrantReadWriteLock();

...

3

Applying the Java
ReentrantReadWriteLock

4

• The SimpleAtomicLong class
shows how to program with
ReentrantReadWriteLock

Applying the Java ReentrantReadWriteLock
class SimpleAtomicLong {

private long mValue;

private ReentrantReadWriteLock

mRWLock = new

ReentrantReadWriteLock();

...

5

• The SimpleAtomicLong class
shows how to program with
ReentrantReadWriteLock

Applying the Java ReentrantReadWriteLock
class SimpleAtomicLong {

private long mValue;

private ReentrantReadWriteLock

mRWLock = new

ReentrantReadWriteLock();

...

See src/share/classes/java/util/concurrent/atomic/AtomicLong.java

Java AtomicLong actually
uses “compare-and-swap”

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent/atomic/AtomicLong.java

6

• The SimpleAtomicLong class
shows how to program with
ReentrantReadWriteLock

Applying the Java ReentrantReadWriteLock
class SimpleAtomicLong {

private long mValue;

private ReentrantReadWriteLock

mRWLock = new

ReentrantReadWriteLock();

...

The value written to &
read from (which is not

atomic by default)

See dzone.com/articles/longdouble-are-not-atomic-in-java

https://dzone.com/articles/longdouble-are-not-atomic-in-java

7

• The SimpleAtomicLong class
shows how to program with
ReentrantReadWriteLock

Applying the Java ReentrantReadWriteLock
class SimpleAtomicLong {

private long mValue;

private ReentrantReadWriteLock

mRWLock = new

ReentrantReadWriteLock();

...The ReentrantReadWriteLock
that serializes access to mValue

There’s no need to use “fair” lock semantics here

8

• The SimpleAtomicLong class
shows how to program with
ReentrantReadWriteLock

Applying the Java ReentrantReadWriteLock
class SimpleAtomicLong {

private long mValue;

...

public SimpleAtomicLong(long init) {

mValue = init;

}

...

Constructor initializes
the mValue field

This constructor needs no lock since it’s only called once in a single thread!

9

• The SimpleAtomicLong class
shows how to program with
ReentrantReadWriteLock

Applying the Java ReentrantReadWriteLock
class SimpleAtomicLong {

private long mValue;

...

public long incrementAndGet() {

mRWLock.writeLock().lock();

try {

return ++mValue;

} finally {

mRWLock.writeLock().unlock();

}

}

...

This method writes
mValue atomically

10

• The SimpleAtomicLong class
shows how to program with
ReentrantReadWriteLock

Applying the Java ReentrantReadWriteLock
class SimpleAtomicLong {

private long mValue;

...

public long incrementAndGet() {

mRWLock.writeLock().lock();

try {

return ++mValue;

} finally {

mRWLock.writeLock().unlock();

}

}

...

Atomically acquire the write-
lock (blocking if necessary) &
increment the current mValue

11

• The SimpleAtomicLong class
shows how to program with
ReentrantReadWriteLock

Applying the Java ReentrantReadWriteLock
class SimpleAtomicLong {

private long mValue;

...

public long incrementAndGet() {

mRWLock.writeLock().lock();

try {

return ++mValue;

} finally {

mRWLock.writeLock().unlock();

}

}

...

A write-lock is “pessimistic” since it assumes contention may occur, so no
other thread can acquire the lock while it’s held, i.e., a write lock is “exclusive”

Half-
Empty

12

• The SimpleAtomicLong class
shows how to program with
ReentrantReadWriteLock

Applying the Java ReentrantReadWriteLock
class SimpleAtomicLong {

private long mValue;

...

public long incrementAndGet() {

mRWLock.writeLock().lock();

try {

return ++mValue;

} finally {

mRWLock.writeLock().unlock();

}

}

...

The “try/finally” idiom ensures
the lock is always released

See docs.oracle.com/javase/tutorial/essential/exceptions/finally.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/finally.html

13

• The SimpleAtomicLong class
shows how to program with
ReentrantReadWriteLock

Applying the Java ReentrantReadWriteLock
class SimpleAtomicLong {

private long mValue;

...

public long get() {

mRWLock.readLock().lock();

try {

return mValue;

} finally {

mRWLock.readLock().unlock();

}

}

...

This method reads
mValue atomically

14

• The SimpleAtomicLong class
shows how to program with
ReentrantReadWriteLock

Applying the Java ReentrantReadWriteLock
class SimpleAtomicLong {

private long mValue;

...

public long get() {

mRWLock.readLock().lock();

try {

return mValue;

} finally {

mRWLock.readLock().unlock();

}

}

...

Atomically acquire the read-
lock (blocking if necessary)

& return current mValue

15

• The SimpleAtomicLong class
shows how to program with
ReentrantReadWriteLock

Applying the Java ReentrantReadWriteLock
class SimpleAtomicLong {

private long mValue;

...

public long get() {

mRWLock.readLock().lock();

try {

return mValue;

} finally {

mRWLock.readLock().unlock();

}

}

...

See docs.oracle.com/javase/tutorial/essential/exceptions/finally.html
A read-lock is also “pessimistic” since it assumes contention may occur, though

other threads can acquire the lock for reading, i.e., a read lock is “shared”

Half-
Empty

https://docs.oracle.com/javase/tutorial/essential/exceptions/finally.html

16

• The SimpleAtomicLong class
shows how to program with
ReentrantReadWriteLock

Applying the Java ReentrantReadWriteLock
class SimpleAtomicLong {

private long mValue;

...

public long get() {

mRWLock.readLock().lock();

try {

return mValue;

} finally {

mRWLock.readLock().unlock();

}

}

...

The “try/finally” idiom ensures
the lock is always released

See docs.oracle.com/javase/tutorial/essential/exceptions/finally.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/finally.html

17

• The SimpleAtomicLong class
shows how to program with
ReentrantReadWriteLock

• “Lock downgrading” example

Applying the Java ReentrantReadWriteLock
class SimpleAtomicLong {

...

public long getAndIncrement() {

long value = 0;

Lock lock = mRWLock.writeLock();

lock.lock();

try {

mValue++;

final Lock readLock =

mRWLock.readLock();

readLock.lock();

try {

lock.unlock();

value = mValue;

} finally { lock = readLock; }

} finally {

lock.unlock();

}

return value - 1;

}

See word-bits.flurg.com/safely-downgrading-a-write-lock-with-readwritelock

http://word-bits.flurg.com/safely-downgrading-a-write-lock-with-readwritelock

18

• The SimpleAtomicLong class
shows how to program with
ReentrantReadWriteLock

• “Lock downgrading” example

Applying the Java ReentrantReadWriteLock
class SimpleAtomicLong {

...

public long getAndIncrement() {

long value = 0;

Lock lock = mRWLock.writeLock();

lock.lock();

try {

mValue++;

final Lock readLock =

mRWLock.readLock();

readLock.lock();

try {

lock.unlock();

value = mValue;

} finally { lock = readLock; }

} finally {

lock.unlock();

}

return value - 1;

}

First obtain a write-lock

19

• The SimpleAtomicLong class
shows how to program with
ReentrantReadWriteLock

• “Lock downgrading” example

Applying the Java ReentrantReadWriteLock
class SimpleAtomicLong {

...

public long getAndIncrement() {

long value = 0;

Lock lock = mRWLock.writeLock();

lock.lock();

try {

mValue++;

final Lock readLock =

mRWLock.readLock();

readLock.lock();

try {

lock.unlock();

value = mValue;

} finally { lock = readLock; }

} finally {

lock.unlock();

}

return value - 1;

}

Atomically increment mValue
with the write-lock held

20

• The SimpleAtomicLong class
shows how to program with
ReentrantReadWriteLock

• “Lock downgrading” example

Applying the Java ReentrantReadWriteLock
class SimpleAtomicLong {

...

public long getAndIncrement() {

long value = 0;

Lock lock = mRWLock.writeLock();

lock.lock();

try {

mValue++;

final Lock readLock =

mRWLock.readLock();

readLock.lock();

try {

lock.unlock();

value = mValue;

} finally { lock = readLock; }

} finally {

lock.unlock();

}

return value - 1;

}

Next downgrade the
write-lock to a read-lock

21

• The SimpleAtomicLong class
shows how to program with
ReentrantReadWriteLock

• “Lock downgrading” example

Applying the Java ReentrantReadWriteLock
class SimpleAtomicLong {

...

public long getAndIncrement() {

long value = 0;

Lock lock = mRWLock.writeLock();

lock.lock();

try {

mValue++;

final Lock readLock =

mRWLock.readLock();

readLock.lock();

try {

lock.unlock();

value = mValue;

} finally { lock = readLock; }

} finally {

lock.unlock();

}

return value - 1;

}

Unlock write-lock & read the
mValue with read-lock still held

Other readers threads can now access this value, but any writer threads must wait

22

• The SimpleAtomicLong class
shows how to program with
ReentrantReadWriteLock

• “Lock downgrading” example

Applying the Java ReentrantReadWriteLock
class SimpleAtomicLong {

...

public long getAndIncrement() {

long value = 0;

Lock lock = mRWLock.writeLock();

lock.lock();

try {

mValue++;

final Lock readLock =

mRWLock.readLock();

readLock.lock();

try {

lock.unlock();

value = mValue;

} finally { lock = readLock; }

} finally {

lock.unlock();

}

return value - 1;

}

Release the proper lock

23

• The SimpleAtomicLong class
shows how to program with
ReentrantReadWriteLock

• “Lock downgrading” example

Applying the Java ReentrantReadWriteLock
class SimpleAtomicLong {

...

public long getAndIncrement() {

long value = 0;

Lock lock = mRWLock.writeLock();

lock.lock();

try {

mValue++;

final Lock readLock =

mRWLock.readLock();

readLock.lock();

try {

lock.unlock();

value = mValue;

} finally { lock = readLock; }

} finally {

lock.unlock();

}

return value - 1;

}

Return the original (non-
incremented) value

No need to lock ‘value’ since it’s local to the activation record of the thread’s stack!

24

• The SimpleAtomicLong class
shows how to program with
ReentrantReadWriteLock

• “Lock downgrading” example

Applying the Java ReentrantReadWriteLock
class SimpleAtomicLong {

...

public long getAndIncrement() {

long value = 0;

Lock lock = mRWLock.writeLock();

lock.lock();

try {

mValue++;

final Lock readLock =

mRWLock.readLock();

readLock.lock();

try {

lock.unlock();

value = mValue;

} finally { lock = readLock; }

} finally {

lock.unlock();

}

return value - 1;

}

Lock downgrading is overkill for the SimpleAtomicLong!

25

End of Java ReentrantRead
WriteLock: Example

Application

