Java ReentrantReadWriteLock:
Key Methods

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderbilt University
Nashuille, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Know the key methods in Java
ReentrantReadWriteLock

<<Java Class>>
(O ReentrantReadWriteLock

@ ReentrantReadWriteLock()

@ ReentrantReadWriteLock(boolean)
@ writeLock():WriteLock

@ readLock():ReadLock

& isFair():boolean

@ getReadLockCount():int

@ isWriteLocked():boolean

@ isWriteLockedByCurrentThread():boolean
@ getWriteHoldCount():int

@ getReadHoldCount():int

& hasQueuedThreads():boolean

& hasQueuedThread(Thread):boolean
& getQueueLength():int

@ hasWaiters(Condition):boolean

@ getWaitQueuelLength(Condition):int
@ toString()

Key Methods in Java
ReentrantReadWritelLock

Key Methods in Java ReentrantReadWriteLock

 writeLock() & readLock() are public class ReentrantReadWriteLock
the key (factory) methods implements ReadWriteLock ... {

defined by this class e
public ReentrantReadWriteLock.

Writelock
writeLock () {
return writerLock;

}

public ReentrantReadWriteLock.
ReadLock
readLock () {
return readerlock;

}

See en.wikipedia.org/wiki/Factory method pattern

https://en.wikipedia.org/wiki/Factory_method_pattern

Key Methods in Java ReentrantReadWritelLock

writeLock() & readlLock() are public class ReentrantReadWriteLock
the key (factory) methods implements ReadWriteLock ... {

defined by this class

« Returns lock used by clients
that want exclusive write writeLock () {
access to the lock return writerLock;

}

public ReentrantReadWriteLock.
WriteLock

public ReentrantReadWriteLock.
ReadLock
readLock () {
return readerlock;

}

Key Methods in Java ReentrantReadWritelLock

writeLock() & readlLock() are public class ReentrantReadWriteLock
the key (factory) methods implements ReadWriteLock ... {

defined by this class e
public ReentrantReadWriteLock.
WriteLock
writeLock () {
return writerLock;

« Returns lock used by clients }
that want shared read-only
access to the lock public ReentrantReadWriteLock.

ReadLock
readLock () {
return readerLock;

}

Key Methods in Java ReentrantReadWritelLock

 writeLock() & readLock() are
the key (factory) methods
defined by this class

public class ReentrantReadWriteLock
implements ReadWriteLock ... {

public ReentrantReadWriteLock.
WriteLock
writeLock () {
return writerLock;
} //////

public ReentrantReadWriteLock.

///// Readlock
readLock () {

These objects are initialized
by the class constructor

| —— return readerLock;

}

Key Methods in Java ReentrantReadWriteLock

 Locks returned by writeLock() public class ReentrantReadWriteLock
& readLock() implement the implements ReadWriteLock ... {

Java Lock interface e
public ReentrantReadWriteLock.
void lock() Writelock

Acquires the lock. .
1 writeLock () {

void lockInterruptibl .
| R return writerLock;
Acquires the lock unless the current
thread is interrupted. }
Condition newCondition()

Returns a new Condition instance public ReentrantReadWriteLock.

that is bound to this Lock instance.

ReadLock
boolean trylLock() readLock () {
Acquires the lock only if it is free at
the time of invocation. return readerLock ’
boolean tryLock(long time, }

TimeUnit unit)

Acquires the lock if it is free within
the given waiting time and the

current thread has not been Readers vs. writer semantics are
interrupted. .

Y enforced internally by the class
implementation using the Lock API

void unlock()

Releases the lock.

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Lock.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Lock.html

Key Methods in Java ReentrantReadWriteLock

« It's methods support a number
of properties

s Reentrancy

This lock allows both readers and writers to reacquire read or write
locks in the style of a ReentrantLock. Non-reentrant readers are not
allowed until all write locks held by the writing thread have been
released.

Additionally, a writer can acquire the read lock, but not vice-versa.
Among other applications, reentrancy can be useful when write locks
are held during calls or callbacks to methods that perform reads under
read locks. If a reader tries to acquire the write lock it will never
succeed.

Lock downgrading

Reentrancy also allows downgrading from the write lock to a read lock,
by acquiring the write lock, then the read lock and then releasing the
write lock. However, upgrading from a read lock to the write lock is not
possible.

Interruption of lock acquisition

The read lock and write lock both support interruption during lock
acquisition.

Condition support

The write lock provides a Condition implementation that behaves in
the same way, with respect to the write lock, as the Condition

implementation provided by newCondition() does for ReentrantLock.
This Condition can, of course, only be used with the write lock.

The read lock does not support a Condition and
readLock() .newCondition() throws UnsupportedOperationException.

Key Methods in Java ReentrantReadWriteLock

* It's methods support a number [geentrancy

Of propert|es This lock allows both readers and writers to reacquire read or write
locks in the style of a ReentrantLock. Non-reentrant readers are not
e Reentra ncy allowed until all write locks held by the writing thread have been
released.
bl A\ i | k" . . : .
¢ Ena esS recursive I0C Additionally, a writer can acquire the read lock, but not vice-versa.
SemantiCS for readerS' Among oth&_r applications, reentrancy can be useful when write locks
. are held during calls or callbacks to methods that perform reads under
erter IOCkS read locks. If a reader tries to acquire the write lock it will never

succeed.

¢ Lock downgrading

Reentrancy also allows downgrading from the write lock to a read lock,
by acquiring the write lock, then the read lock and then releasing the
write lock. However, upgrading from a read lock to the write lock is not
possible.

¢ Interruption of lock acquisition

The read lock and write lock both support interruption during lock
acquisition.

e Condition support
The write lock provides a Condition implementation that behaves in
the same way, with respect to the write lock, as the Condition

implementation provided by newCondition() does for ReentrantLock.
This Condition can, of course, only be used with the write lock.

The read lock does not support a Condition and
readLock() .newCondition() throws UnsupportedOperationException.

This property is not supported by Java StampedLock

Key Methods in Java ReentrantReadWriteLock

« It's methods support a number
of properties

 Lock downgrading

« Enables atomic downgrading
of a write lock to a read lock

s Reentrancy

This lock allows both readers and writers to reacquire read or write
locks in the style of a ReentrantLock. Non-reentrant readers are not
allowed until all write locks held by the writing thread have been
released.

Additionally, a writer can acquire the read lock, but not vice-versa.
Among other applications, reentrancy can be useful when write locks
are held during calls or callbacks to methods that perform reads under
read locks. If a reader tries to acquire the write lock it will never
succeed.

Lock downgrading

Reentrancy also allows downgrading from the write lock to a read lock,

by acquiring the write lock, then the read lock and then releasing the
write lock. However, upgrading from a read lock to the write lock is not
possible.

¢ Interruption of lock acquisition
The read lock and write lock both support interruption during lock
acquisition.

e Condition support
The write lock provides a Condition implementation that behaves in
the same way, with respect to the write lock, as the Condition

implementation provided by newCondition() does for ReentrantLock.
This Condition can, of course, only be used with the write lock.

The read lock does not support a Condition and
readLock() .newCondition() throws UnsupportedOperationException.

This property (& more!) is supported by Java StampedLock

Key Methods in Java ReentrantReadWriteLock

« It's methods support a number
of properties

« Interruption of lock acquisition

« Conventional Java interrupt
requests are supported

s Reentrancy

This lock allows both readers and writers to reacquire read or write
locks in the style of a ReentrantLock. Non-reentrant readers are not
allowed until all write locks held by the writing thread have been
released.

Additionally, a writer can acquire the read lock, but not vice-versa.
Among other applications, reentrancy can be useful when write locks
are held during calls or callbacks to methods that perform reads under
read locks. If a reader tries to acquire the write lock it will never
succeed.

¢ Lock downgrading

Reentrancy also allows downgrading from the write lock to a read lock,
by acquiring the write lock, then the read lock and then releasing the
write lock. However, upgrading from a read lock to the write lock is not
possible.

Interruption of lock acquisition

The read lock and write lock both support interruption during lock
acquisition.

e Condition suppor

The write lock provides a Condition implementation that behaves in
the same way, with respect to the write lock, as the Condition
implementation provided by newCondition() does for ReentrantLock.
This Condition can, of course, only be used with the write lock.

The read lock does not support a Condition and
readLock() .newCondition() throws UnsupportedOperationException.

This property is supported by Java StampedLock

Key Methods in Java ReentrantReadWriteLock

 It's methods support a number [Reentrancy

Of propert|es This lock allows both readers and writers to reacquire read or write
locks in the style of a ReentrantLock. Non-reentrant readers are not
allowed until all write locks held by the writing thread have been
released.

Additionally, a writer can acquire the read lock, but not vice-versa.
Among other applications, reentrancy can be useful when write locks
are held during calls or callbacks to methods that perform reads under
read locks. If a reader tries to acquire the write lock it will never

succeed.
» Condition support * Lock downgrading
Reentrancy also allows downgrading from the write lock to a read lock,
¢ by acquiring the write lock, then the read lock and then releasing the
Enables the use of Java
: write lock. However, upgrading from a read lock to the write lock is not
ReentrantReadWriteLocks o
W|th Java COI’IdItIOI’lOb]eCtS ¢ Interruption of lock acquisition
On/y for Write IOCkS The read lock and write lock both support interruption during lock
acquisition.

Condition support

The write lock provides a Condition implementation that behaves in
the same way, with respect to the write lock, as the Condition
implementation provided by newCondition() does for ReentrantLock.
This Condition can, of course, only be used with the write lock.

The read lock does not support a Condition and
readLock() .newCondition() throws UnsupportedOperationException.

This property is not supported by Java StampedLock

Key Methods in Java ReentrantReadWriteLock

« It's methods support a number
of properties

s Reentrancy

This lock allows both readers and writers to reacquire read or write
locks in the style of a ReentrantLock. Non-reentrant readers are not
allowed until all write locks held by the writing thread have been
released.

Additionally, a writer can acquire the read lock, but not vice-versa.
Among other applications, reentrancy can be useful when write locks
are held during calls or callbacks to methods that perform reads under
read locks. If a reader tries to acquire the write lock it will never
succeed.

¢ Lock downgrading

Reentrancy also allows downgrading from the write lock to a read lock,
by acquiring the write lock, then the read lock and then releasing the
write lock. However, upgrading from a read lock to the write lock is not
possible.

¢ Interruption of lock acquisition

The read lock and write lock both support interruption during lock
acquisition.

e Condition support
The write lock provides a Condition implementation that behaves in
the same way, with respect to the write lock, as the Condition

implementation provided by newCondition() does for ReentrantLock.
This Condition can, of course, only be used with the write lock.

The read lock does not support a Condition and
readLock() .newCondition() throws UnsupportedOperationException.

These properties make optimizing ReentrantReadWriteLock
hard (& motivates the need for Java StampedLock)

End of Java ReentrantRead
WriteLock: Key Methods

15

