Java ReentrantReadWritelock:
Structure & Functionality

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderbilt University
Nashuille, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand the structure & functionality of the Java ReentrantReadWriteLock
class

ReentrantRead bimp
WriteLock »1Sync
operation() ¢ operationimp()
: AN
""" '| imp.operationlmp();)\
FairSync NonFairSync
RefinedAbstraction
operationlmp() operationlmp()

Overview of
ReentrantReadWriteLock

Overview of Java ReentrantReadWriteLock

 Provide a Java readers-writer public class ReentrantReadWriteLock
lock implementation implements ReadWriteLock ... {

Class ReentrantReadWriteLock

java.lang.Object
java.util.concurrent.locks.ReentrantReadWriteLock

All Implemented Interfaces:

Serializable, ReadWriteLock

public class ReentrantReadWriteLock
extends Object
implements ReadWritelLock, Serializable
An implementation of ReadWriteLock supporting similar semantics to ReentrantLock.
This class has the following properties:
« Acquisition order
This class does not impose a reader or writer preference ordering for lock access. However, it does support an optional fairness policy.
Non-fair mode (default)

When constructed as non-fair (the default), the order of entry to the read and write lock is unspecified, subject to reentrancy
constraints. A nonfair lock that is continuously contended may indefinitely postpone one or more reader or writer threads, but will
normally have higher throughput than a fair lock.

See docs.oradle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantRead\WriteLock.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html

Overview of Java ReentrantReadWriteLock

 Provide a Java readers-writer public class ReentrantReadWriteLock

lock implementation implements ReadWriteLock ... {
« Implements the ReadWriteLock -
interface

Interface ReadWriteLock

All Known Implementing Classes:

ReentrantReadWriteLock

public interface ReadWriteLock

A ReadWriteLock maintains a pair of associated 1 ocks, one for read-only operations and one for writing. The read lock
may be held simultaneously by multiple reader threads, so long as there are no writers. The write lock is exclusive.

All ReadWriteLock implementations must guarantee that the memory synchronization effects of writeLock operations (as
specified in the Lock interface) also hold with respect to the associated readLock. That is, a thread successfully acquiring the read
lock will see all updates made upon previous release of the write lock.

A read-write lock allows for a greater level of concurrency in accessing shared data than that permitted by a mutual exclusion lock. It
exploits the fact that while only a single thread at a time (a writer thread) can modify the shared data, in many cases any number of
threads can concurrently read the data (hence reader threads). In theory, the increase in concurrency permitted by the use of a read-
write lock will lead to performance improvements over the use of a mutual exclusion lock. In practice this increase in concurrency will
only be fully realized on a multi-processar, and then only if the access patterns for the shared data are suitable.

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReadWriteLock.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReadWriteLock.html

Overview of Java ReentrantReadWriteLock

 Provide a Java readers-writer public class ReentrantReadWriteLock
lock implementation implements ReadWriteLock ... {

/** Inner class providing
readlock */
* Nested ReadLock & WriteLock ReentrantReadWriteLock.ReadLock

classes implement Lock interface = readerLock;

/** Inner class providing
writelock */
ReentrantReadWritelLock.WriteLock
writerLock;

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Lock.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Lock.html

Overview of Java ReentrantReadWriteLock

« Implements readers-writer public class ReentrantReadWriteLock

semantics

Waiting) Runnﬁm7(' Waiting
readers readers writers
queue queue

= ?Z

\ J

readerLock writerLock

Critical Section

implements ReadWriteLock ... {

/** Inner class providing
readlock */
ReentrantReadWriteLock.ReadLock
readerLock;

/** Inner class providing
writelock */
ReentrantReadWritelLock.WritelLock
writerLock;

Multiple reader threads can run
concurrently within a critical section

Overview of Java ReentrantReadWriteLock

« Implements readers-writer

public class ReentrantReadWriteLock

semantics
Waiting Runnﬁm7(' Waiting
readers writer writers
queue queue

S

<& @ -

™ ;{?

J \

J

readerLock writerLock

Critical Section

implements ReadWriteLock ... {

/** Inner class providing
readlock */
ReentrantReadWriteLock.ReadLock
readerLock;

/** Inner class providing
writelock */
ReentrantReadWritelLock.WritelLock
writerLock;

Only one writer thread can run
at a time within a critical section

Overview of Java ReentrantReadWriteLock

« Implements readers-writer public class ReentrantReadWriteLock
semantics implements ReadWriteLock ... {

/** Inner class providing
readlock */
ReentrantReadWriteLock.ReadLock
readerLock;

/** Inner class providing
writelock */
ReentrantReadWritelLock.WritelLock
writerLock;

ReentrantReadWriteLock is “pessimistic”, i.e., it assumes contention may occur

Overview of Java ReentrantReadWriteLock

 Applies the Bridge pattern public class ReentrantReadWriteLock
implements ReadWriteLock ... {

Decouple interface from implementation
so that fair & non-fair readers-writer
semantics can be supported uniformly

/

ReentrantRead imp
WriteLock b > Sync
operation() ¢ operationlmp()

\ ™

""" '| imp.operationlmp();)\
FairSync NonFairSync

RefinedAbstraction

operationlmp() operationimp()

See en.wikipedia.org/wiki/Bridge pattern

http://en.wikipedia.org/wiki/Bridge_pattern

Overview of Java ReentrantReadWriteLock

 Applies the Bridge pattern public class ReentrantReadWriteLock

. Locking handled by Sync implements ReadWriteLock ... {

implementor hierarchy /** Performs sync mechanics */

final Sync sync;

11

Overview of Java ReentrantReadWriteLock

 Applies the Bridge pattern public class ReentrantReadWriteLock
- Locking handled by Sync implements ReadWriteLock ... {
implementor hierarchy

. _ _ /** Performs sync mechanics */
» Inherits functionality from final Sync sync;

AbstractQueuedSynchronizer
/** Sync implementation for
ReentrantReadWriteLock */
abstract static class Sync extends
AbstractQueuedSynchronizer

{ ...}

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/locks/AbstractQueuedSynchronizer.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/AbstractQueuedSynchronizer.html

Overview of Java ReentrantReadWriteLock

 Applies the Bridge pattern public class ReentrantReadWriteLock
. Locking handled by Sync implements ReadWriteLock ... {
implementor hierarchy e .
_ _ _ /** Performs sync mechanics */
» Inherits functionality from final Sync sync;
AbstractQueuedSynchronizer
« Many Java synchronizers /** Sync implementation for

ReentrantReadWriteLock */
abstract static class Sync extends
AbstractQueuedSynchronizer

{ ...}

based on FIFO wait queues
use this framework

See gee.cs.oswedgo.edu/dl/papers/aags.pdf

http://gee.cs.oswego.edu/dl/papers/aqs.pdf

Overview of Java ReentrantReadWriteLock

 Applies the Bridge pattern

 Locking handled by Sync
implementor hierarchy

 Defines NonFairSync &
FairSync subclasses with
non-FIFO & FIFO semantics

public class ReentrantReadWriteLock

implements ReadWriteLock ... {

/** Performs sync mechanics */
final Sync sync;

/** Sync implementation for
ReentrantReadWriteLock */
abstract static class Sync extends

AbstractQueuedSynchronizer

{ ...}

static final class NonFairSync
extends Sync { ... }

static final class FairSync
extends Sync { ... }

See src/share/classes/java/util/concurrent/locks/ReentrantReadWriteLock.java

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent/locks/ReentrantReadWriteLock.java

Overview of Java ReentrantReadWriteLock

 Applies the Bridge pattern public class ReentrantReadWriteLock
implements ReadWriteLock ... {

public ReentrantReadWriteLock

« Constructor enables fair vs. (boolean fair) {
non-fair lock acquisition model sync = fair ? new FairSync /()
» These models apply the same : new NonfairSync();
pattern used by ReentrantLock ~ r&3derlock = .
2 Semaphore 1:1ew ReadlLock (this) ;
writerLock =

new WriteLock (this) ;

See earlier lessons on “Java ReentrantLock” & “Java Semaphore”

Overview of Java ReentrantReadWriteLock

 Applies the Bridge pattern public class ReentrantReadWriteLock
implements ReadWriteLock ... {

public ReentrantReadWriteLock

« Constructor enables fair vs. (boolean fair) {
non-fair lock acquisition model sync = fair ? new FairSync()\
+ These models apply the same - new NonfairSync();
readerlock =

pattern used by ReentrantLock

R Semaphore new ReadLock (this) ;

writerLock =
new WriteLock (this) ;

This param determines whether
FairSync or NonfairSync is used

See earlier lessons on “Java Semaphore’ & “Java ReentrantLock”

Overview of Java ReentrantReadWriteLock

 Applies the Bridge pattern public class ReentrantReadWriteLock
implements ReadWriteLock ... {

public ReentrantReadWriteLock

« Constructor enables fair vs. (boolean fair) {
non-fair lock acquisition model sync = fair ? new FairSync /()
» These models apply the same : new NonfairSync();
pattern used by ReentrantLock ~ r&3derlock = .
R Semaphore 1:1ew ReadlLock (this) ;
writerLock =

new WriteLock (this) ;

Ensures strict "FIFO” fairness,
at the expense of performance

17

Overview of Java ReentrantReadWriteLock

 Applies the Bridge pattern public class ReentrantReadWriteLock
implements ReadWriteLock ... {

public ReentrantReadWriteLock

« Constructor enables fair vs. (boolean fair) {
non-fair lock acquisition model sync = fair ? new FairSync /()
» These models apply the same + new NonfairSync();

pattern used by ReentrantLock readerLock =/_ .
& Semaphore new ReadLock (this);

writerLock =
new WriteLock (this) ;

Enables faster performance
at the expense of rfairness

18

Overview of Java ReentrantReadWriteLock

 Applies the Bridge pattern public class ReentrantReadWriteLock
implements ReadWriteLock ... {

public ReentrantReadWriteLock

« Constructor enables fair vs. (boolean fair) {
non-fair lock acquisition model sync = fair ? new FairSync ()
» These models apply the same : new NonfairSync();

pattern used by ReentrantLock =~ readerlock = /
& Semaphore new ReadLockT{(this) ;
P writerLock =

/ new WriteLock (this) ;
FairSync is generally much ’ [- - pam——"
slower than NonfairSync, T ” | ==

S0 use it accordingly

19

Overview of Java ReentrantReadWriteLock

 Applies the Bridge pattern public class ReentrantReadWriteLock
implements ReadWriteLock ... {

public ReentrantReadWriteLock

« Constructor enables fair vs. (boolean fair) {
non-fair lock acquisition model sync = fair ? new FairSync /()
» These models apply the same : new NonfairSync();
pattern used by ReentrantLock ~ r&3derlock = .
2 Semaphore 1:1ew ReadlLock (this) ;
writerLock =

new WriteLock (this) ;

}

public ReentrantReadWriteLock () {
sync = new NonfairSync() ;

- N\

The default constructor therefore
uses the faster non-fair semantics

20

Overview of Java ReentrantReadWriteLock

 Applies the Bridge pattern public class ReentrantReadWriteLock
implements ReadWriteLock ... {

public ReentrantReadWriteLock

« Constructor enables fair vs. (boolean fair) {
non-fair lock acquisition model sync = fair ? new FairSync /()
: new NonfairSync() ;
readerLock =
new ReadLock (this) ;
writerLock =
 Initializes the readerLock & new WriteLock (this) ;

writerLock field }

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Lock.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Lock.html

Overview of Java ReentrantReadWriteLock

 Applies the Bridge pattern public class ReentrantReadWriteLock
implements ReadWriteLock ... {

public ReentrantReadWriteLock

« Constructor enables fair vs. (boolean fair) {
non-fair lock acquisition model sync = fair ? new FairSync /()
new NonfairSync() ;
readerLock =
new ReadLock (this) ;
writerLock =
 Initializes the readerLock & new WriteLock (this) ;

writerLock field }

« WriteLock & ReadLock use
“shared” mode of Abstract

(2 ds hronize public static class WritelLock
ueuedsyncnronizer

implements Lock ... { ... }

public static class ReadLock
implements Lock ... { ... }

22

Overview of Java ReentrantReadWriteLock

 Applies the Bridge pattern public class ReentrantReadWriteLock
implements ReadWriteLock ... {

public ReentrantReadWriteLock

« Constructor enables fair vs. (boolean fair) {
non-fair lock acquisition model sync = fair ? new FairSync /()
: new NonfairSync() ;
readerLock =
new ReadLock (this) ;
writerLock =
« Initializes the readerLock & new WriteLock (this) ;

writerLock field }

« WriteLock & ReadLock use
“shared” mode of Abstract
QueuedSynchronizer

 Also implement the Lock
interface w/methods like public static class ReadLock
lock(), tryLock(), & unlock() implements Lock ... { ... }

public static class WritelLock
implements Lock ... { ... }

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Lock.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Lock.html

End of Java ReentrantRead
WriteLock: Structure &
Functionality

24

