Java Readers-Writer Locks:
Evaluating Pros & Gons

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderbilt University
Nashuille, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

 Appreciate the pros & cons of
readers-writer locks in general

Pros & Cons of
Readers-Writer Locks

Pros & Cons of Readers-Writer Locks

Pros

« Readers-writer locks may help
improve performance

Pros & Cons of Readers-Writer Locks

Pros é
—>
« Readers-writer locks may help

improve performance

 e.g., when resources are read
from much more often than they
are written to

 Shared
Resource

Pros & Cons of Readers-Writer Locks

Pros —>§
- Readers-writer locks may help _>§ CTw™
improve performance Tw _>§

 e.g., when resources are read (T, a8
from much more often than they ' '
are written to

» Especially on multi-core platforms ; |
. _ = ,
that have a high level of inherent — —
parallelism

Shared
Resource

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReadWriteLock.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReadWriteLock.html

Pros & Cons of Readers-Writer Locks

Cons S

« Readers-writer locks can be
problematic in practice

Pros & Cons of Readers-Writer Locks

Voo -

Cons

« Readers-writer locks can be
problematic in practice, e.g.

« Can lead to starvation

 Giving preference to either
readers or writers can yield
problems due to unfairness

See www.javaspecialists.eu/archive/Issuel65.html

http://www.javaspecialists.eu/archive/Issue165.html

Pros & Cons of Readers-Writer Locks

Cons public class SimpleAtomicLong {

« Readers-writer locks can be

o] public long incrementAndGet () ({
problematic in practice, e.q.

long value = 0;
Lock lock = mRWLock.writeLock() ;

- Can be hard to program lock.lock() ;

_ try {
« Due to features like lock mValue++;

upgrading & downgrading final Lock readLock =
_ mRWLock . readLock () ;
readLock.lock(); // Downgrade
try {
lock.unlock () ;
value = mValue;
} finally { lock = readLock; }
} finally {
lock.unlock () ;
}

return value;

See word-bits.flurg.com/safely-downgrading-a-write-lock-with-readwritelock

http://word-bits.flurg.com/safely-downgrading-a-write-lock-with-readwritelock

Pros & Cons of Readers-Writer Locks

Cons Ffe— ——
« Readers-writer locks can be | o g
problematic in practice, e.q. » | ' ,

« May be significantly slower
than other synchronizers

« Due to complexities of
implementing the readers-
writer protocol in software

See www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized

http://www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized
http://www.takeourword.com/images/persistence-of-memory.jpg

Pros & Cons of Readers-Writer Locks

« Upcoming lessons evaluate the
pros & cons of Java StampedLock
& ReentrantReadWriteLock in
more detail

Class ReentrantReadWriteLock

java.lang.Object
java.util.concurrent.locks.ReentrantReadWriteLock

All Implemented Interfaces: P G v,
Serializable, ReadWriteLock gees. — 1

_.....-‘ \

public class ReentrantReadWriteLock
extends Object
implements ReadWritelLock, Serializable

An implementation of ReadWriteLock supporting similar
semantics to ReentrantLock.

This class has the following properties:
= Acquisition order
This class does not impose a reader or writer preference

ordering for lock access. However, it does support an
optional fairness policy.

Class StampedLock

java.lang.Object
java.util.concurrent.locks.StampedLock

All Implemented Interfaces:

Serializable

public class StampedLock
extends Object
implements Serializable

A capability-based lock with three modes for controlling read/write access. The
state of a StampedLock consists of a version and mode. Lock acquisition methods
return a stamp that represents and controls access with respect to a lock state;
"try" versions of these methods may instead return the special value zero to
represent failure to acquire access. Lock release and conversion methods require
stamps as arguments, and fail if they do not match the state of the lock. The three
modes are:

» Writing. Method writeLock() possibly blocks waiting for exclusive access,
returning a stamp that can be used in method unlockWrite(long) to
release the lock. Untimed and timed versions of tryWriteLock are also
provided. When the lock is held in write mode, no read locks may be
obtained, and all optimistic read validations will fail.

« Reading. Method readLock() possibly blocks waiting for non-exclusive
access, returning a stamp that can be used in method unlockRead(long) to
release the lock. Untimed and timed versions of tryReadLock are also
provided.

« Optimistic Reading. Method tryOptimisticRead () returns a non-zero
stamp only if the lock is not currently held in write mode. Method
validate(long) returns true if the lock has not been acquired in write
mode since obtaining a given stamp. This mode can be thought of as an
extremely weak version of a read-lock, that can be broken by a writer at any
time. The use of optimistic mode for short read-only code segments often

11

End of Java Readers-Writer
Locks: Evaluating Pros & Cons

12

