The Specific Notification Pattermn:
“Fair’ Semaphore Semantics

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderbilt University
Nashuille, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

Be aware of the semantics of “fair”
semaphores

.F FEA AL ?

x aie -s;n

Pl

e

Class Semaphore

java.lang.Object
java.util.concurrent.Semaphore

All Implemented Interfaces:

Serializable

public class Semaphore
extends Object
implements Serializable

A counting semaphore. Conceptually, a semaphore maintains
a set of permits. Each acquire() blocks if necessary until a
permit is available, and then takes it. Each release() adds a
permit, potentially releasing a blocking acquirer. However,
no actual permit objects are used; the Semaphore just keeps
a count of the number available and acts accordingly.

Semaphores are often used to restrict the number of threads
than can access some (physical or logical) resource. For
example, here is a class that uses a semaphore to control
access to a pool of items:

An Overview of Fair
Semaphore Semantics

Overview of Fair Semaphore Semantics

« Threads calling acquire() on a
“fair” semaphore obtain permits
in “first-in, first-out” (FIFO) order | avalang.Object

java.util.concurrent.Semaphore
£ P fL ﬁ: b £ p

k \ nh -g

Class Semaphore

All Implemented Interfaces:

Serializable

.‘

| “ I' public class Semaphore
extends Object

f —~ | implements Serializable
A counting semaphore. Conceptually, a semaphore maintains
a set of permits. Each acquire() blocks if necessary until a
permit is available, and then takes it. Each release() adds a
permit, potentially releasing a blocking acquirer. However,
no actual permit objects are used; the Semaphore just keeps
a count of the number available and acts accordingly.

Semaphores are often used to restrict the number of threads
than can access some (physical or logical) resource. For
example, here is a class that uses a semaphore to control
access to a pool of items:

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Semaphore.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Semaphore.html

Overview of Fair Semaphore Semantics

« Threads calling acquire() on a
“fair” semaphore obtain permits
in “first-in, first-out” (FIFO) order

FIFO ordering applies to
internal points of execution
within semaphore methods

Class Semaphore

java.lang.Object
java.util.concurrent.Semaphore

All Implemented Interfaces:

Serializable

public class Semaphore
extends Object
implements Serializable

A counting semaphore. Conceptually, a semaphore maintains
a set of permits. Each acquire() blocks if necessary until a
permit is available, and then takes it. Each release() adds a
permit, potentially releasing a blocking acquirer. However,
no actual permit objects are used; the Semaphore just keeps
a count of the number available and acts accordingly.

Semaphores are often used to restrict the number of threads
than can access some (physical or logical) resource. For
example, here is a class that uses a semaphore to control
access to a pool of items:

Overview of Fair Semaphore Semantics

« Threads calling acquire() on a
“fair” semaphore obtain permits
in “first-in, first-out” (FIFO) order

« FIFO ordering applies to
internal points of execution
within semaphore methods

* e.g., one thread can invoke
acquire() before another, but
reach the ordering point
after the other

Class Semaphore

java.lang.Object
java.util.concurrent.Semaphore

All Implemented Interfaces:

Serializable

public class Semaphore
extends Object
implements Serializable

A counting semaphore. Conceptually, a semaphore maintains
a set of permits. Each acquire() blocks if necessary until a
permit is available, and then takes it. Each release() adds a
permit, potentially releasing a blocking acquirer. However,
no actual permit objects are used; the Semaphore just keeps
a count of the number available and acts accordingly.

Semaphores are often used to restrict the number of threads
than can access some (physical or logical) resource. For
example, here is a class that uses a semaphore to control
access to a pool of items:

Overview of Fair Semaphore Semantics

« Threads calling acquire() on a
“fair” semaphore obtain permits
in “first-in, first-out” (FIFO) order

« The Specific Notification
pattern provides an effective
model for implementing fair
semaphore semantics

Specific Notification

Java Thread Synchronization

Tom Cargill
Consultant

Box 69 Louisville, CO 80027
www.sni.net/~cargill

Abstract

Java supports thread synchronization by means of monitor-
like primitives. The weak semantics of Java's signaling
mechanism provides little contrel over the order in which
threads acquire resources, which encourages the use of the
Haphazard Notificatton pattern, in which an arbitrary
thread is selected from a set of threads competing for a
resource. For synchronization problems in which such
arbitrary selection of threads is unacceptable, the Specific
Notification pattern may be nsed to designate exactly which
thread should proceed. Specific Notification provides an
explicit mechanism for thread selection and scheduling.

0. Introduction

To study Java's threads, I first tackled
some of the classic exercises, like the
“Dining Philosophers™ and the “Readers
and Writers.” The sclutions that I
obtained were reascnable, but I felt
uncomfortable with the degree to which
I had to depend on serendipitous
treatment with respect to contention for
locks and notifications. The solutions
were free of deadlock, but were not fair
in all circumstances. I thought I might

threads could have active requests
outstanding with an WNTFP server. The
fondamental correctness of this class
depended on waiting threads being
reactivated in exactly the right order to
receive their responses from the server.
In coding this class I applied the Specific
MNotification mechanism described
below. With new insight, I retumed to
the earlier exercises and found that
Specific Notification provided complete
solutions to those problems. I therefore
propose the Specific Notification pattern.

See www.dre.vanderbilt.edu/~schmidt/PDF/

specific-notification.pdf (especially Listing 3)

http://www.dre.vanderbilt.edu/~schmidt/PDF/specific-notification.pdf

End of the Specific
Notification Pattern: Fair
Semaphore Semantics

The Specific Notification Pattermn:
Implementing a “Fair’ Semaphore

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderbilt University
Nashuille, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Recognize how to implement a “fair”

Specific Notification
for
Java Thread Synchronization

Tom Cargill
Consultant
Box 69, Louisville, CO 80027
www.sni.net/~cargill

Abstract

Java supports thread synchronization by means of monitor-

semaphore using the Specific e e o s

threads acquire resources, which encounrages the use of the

rfr ' Haphazard Notificati in which bitrary
Notification pattern e o o et 0

0. Introduction

To study Java's threads, I first tackled
some of the classic exercises, like the
“Dining Philosophers™ and the “Readers
and Writers™ The sclutions that I
obtained were reascmable but I felt
uncomfortable with the degree to which
I had to depend on serendipitous
treatment with respect to contention for
locks and notifications. The selutions
were free of deadlock, but were not fair
in all circumstances. I thought I might
have to resign myyself to tolerating some
unfairness in Java. Next. I built a multi-
threaded NNTP! client, in which several

1B Kantor, P. Lapsley, Network News Transfir
Protocol, Internic RFC 977, 1986,

resource. For synchronization problems in which such
arbitrary selection of threads is unacceptable. the Specific
Notification pattern may be used to designate exactly which
thread should proceed. Specific Notification provides an
explicit mechanism for thread selection and scheduling.

threads could have active requests
outstanding with an NNTP server. The
fundamental correctness of this class
depended on waiting threads being
reactivated in evacily the right order to
receive their responses from the server.
In coding this class I applied the Specific
Motification — mechanism described
below. With new msight, I returned to
the earlier exercises and found that
Specific Notification provided complete
solutions to those problems. I therefore
propose the Specific Notification pattern.

Section 1 summarizes the semantics of
Java's thread synchronization
mechanisms, contrasting them with
classical monitors; this section may be
omitted by readers who have a detailed

See www.dre.vanderbilt.edu/~schmidt/PDF/

specific-notification.pdf (especially Listing 3)

http://www.dre.vanderbilt.edu/~schmidt/PDF/specific-notification.pdf

Visual Analysis of
Fair Semaphore Acquire
(T; & T))

Visual Analysis of Fair Semaphore Acquire (T, & T,)

FairSemaphore

Enter monitor
—)? object

Critical
Section

FairSemaphore s =
new FairSemaphore (1) ;

// Thread T1

_ s.acquire() ;
mPermits

1

Create a falr semaphore
with a single permit

12

Visual Analysis of Fair Semaphore Acquire (T, & T,)

FairSemaphore

Enter monitor
—)? object

Critical
Section

FairSemaphore s =
new FairSemaphore(1l);

Thread T, acquires the

semaphore immediately
since there are no waiters // Thread T1
s.acquire () ;
mPermits e

1

13

Visual Analysis of Fair Semaphore Acquire (T, & T,)

FairSemaphore

| 1

Critical
Section

‘ Acquire

_}? Lock
T,

Synchronize access via
intrinsic (monitor) lock to
protect the object’s state

from race conditions

mPermits

1

14

Visual Analysis of Fair Semaphore Acquire (T, & T,)

FairSemaphore

waitLock

PO
T,

Critical
Section

If gueue is empty & permit
count is greater than 0
decrement count & return

mPermits

0

This is the “fast path”

Visual Analysis of Fair Semaphore Acquire (T, & T,)

FairSemaphore

Critical
Section

Release intrinsic
mWaitQ (monitor) lock & leave
the monitor object’s
critical section
mPermits
0

= _,z ‘
T, 16

Visual Analysis of Fair Semaphore Acquire (T, & T,)

FairSemaphore

Enter monitor
—)? object

Critical
Section

FairSemaphore s =

Thread T, blocks in new FairSemaphore (1) ;

acquire() since no
permits are available

// Thread T2

_ s.acquire () ;
mPermits

0

17

Visual Analysis of Fair Semaphore Acquire (T, & T,)

‘ FairSemaphore

waitObj,
\

Critical
Section

Create a new waitObj, that
can be synchronized, queued
in the wait queue, & waited
upon by thread T,

mPermits

0

This waiting happens outside of the FairSemaphore’s critical section

Visual Analysis of Fair Semaphore Acquire (T, & T,)

FairSemaphore
\\ﬂ !
29 1A\ s
Acquire
T2 Critical LOCk \ Wai tOb J A

—= Section

Critical
Section

Must synchronize on waitObyj,
to ensure that its not deleted
prematurely in release()

mPermits

0

19

Visual Analysis of Fair Semaphore Acquire (T, & T,)

FairSemaphore

waitObj,

Section Lock
_,z
T, :
Must also synchronize on
the intrinsic (monitor) lock
to update wait queue safely
mPermits
0

20

Visual Analysis of Fair Semaphore Acquire (T; & T,)

FairSemaphore

Critical
Section

+z
T,

mWaitQ Add Wal'tOb];] to the
end of the wait queue,
i.e., in FIFO order
A mPermits
oves waitObj, O

21

Visual Analysis of Fair Semaphore Acquire (T, & T,)

FairSemaphore

Critical
Section

mWaitQ

A mPermits
waitObj,

g 0
, : Release intrinsic (monitor)
‘ lock & leave the monitor
22 object’s critical section

Visual Analysis of Fair Semaphore Acquire (T, & T,)

FairSemaphore

Critical
Section

mHaitQ wait() must be made with
waitobj, synchronized, but wyout
holding the intrinsic (monitor)
I lock to avoid "self-deadlock”
A *Z ! mPermits
g T, waitObj, 0

23

Visual Analysis of Fair Semaphore Acquire (T, & T,)

FairSemaphore

Critical
Section

mWaitQ

wait() atomically releases the
waitObj, monitor lock & blocks

—

. .
Release] Block 0:’?
lock " monitor condition T, .
mPermits
waitObj,

Critical
Section O

24

Visual Analysis of Fair Semaphore Acquire (T, & T,)

FairSemaphore

Critical
Section

73

Block on

monitor condition T, -
A mPermits
e waitObj,

0

Here’s what happens when a Java InterruptedException (IE) is thrown
in the acquire() method during a blocking call to wait() on a waitODbj

Visual Analysis of Fair Semaphore Acquire (T, & T,)

FairSemaphore

Critical

i ‘ Acquire
Section L ock
_,,Z
T, ——
mWaitQ Must reacquire intrinsic
(monitor) lock in the catch
clause to access the wait
e queue safely
A mPermits
o waitObj,
Section O

26

Visual Analysis of Fair Semaphore Acquire (T, & T,)

FairSemaphore

Critical
Section

_,,Z !
mWaito | \ Try removing waitObj, from wait
queue (If it’s not on the gqueue
another thread has released it, so
give back permit via release())

mPermits

0

27

Visual Analysis of Fair Semaphore Acquire (T, & T,)

FairSemaphore

Critical
Section

*?
T,

mWaitQ

Rethrow the
InterruptedException

mPermits

0

28

Visual Analysis of
Fair Semaphore Acquire

(T5)

29

Visual Analysis of Fair Semaphore Acquire (T5)

FairSemaphore

Enter monitor
—)? object

Critical
Section

Thread T blocks in
acquire() since there’s
already a waiter

FairSemaphore s =
new FairSemaphore (1) ;

mWaitQ

e // Thread T3

Release ﬁ Block on .
lock *~ monitor condition T, . S . acqulr e () ;
mPermits
waitObj,

Critical
Section O

30

Visual Analysis of Fair Semaphore Acquire (T5)

T3

Critical

Section

FairSemaphore

N
——

waitObj,

Critical
Section

A\

Critical
Section

Release
lock

- 1
s
. Block on

" P op s
I monitor condition T,

waitObj,

mPermits

0

Create another waitObj, that
can be synchronized, queued,
& waited upon by thread T,

31

Visual Analysis of Fair Semaphore Acquire (T5)

FairSemaphore
IR \ |
A Aq\&
T; Lock waitObjg

Sectio \

Critical
Section

Synchronize on waitObyjy

to ensure it’s not deleted
¥ prematurely in release()

->

1)
Release _)
lock © monitor g%%zz T, .
mPermits
waitObj,

Critical
Section O

32

Visual Analysis of Fair Semaphore Acquire (T5)

FairSemaphore

waitObj,

Critical
Section

mWaitQ Must synchronize on the
intrinsic (monitor) lock to
& update wait gueue safely

Release [% Block ;n_>

lock 7 monitor condition T,

A mPermits
waitObj,
Section O

33

Visual Analysis of Fair Semaphore Acquire (T5)

FairSemaphore

Critical
Section

*?
T3

waitObj,

waitObj,

mPermits

0

Add new waitObj, to end of
wait gueue, i.e., in FIFO order

34

Visual Analysis of Fair Semaphore Acquire (T5)

FairSemaphore

Critical
Section

Release intrinsic
(monitor) lock & leave
the monitor object’s
critical section

mPermits

0

waitObj,

7 s
:

Visual Analysis of Fair Semaphore Acquire (T5)

FairSemaphore

Critical
Section

mWaitQ wait() on 1'/|/a/'t(_)bj5 must b_e
- made wy waitObj, synchronized,
~% but wyout holding monitor lock
A o A‘K to avoid “self-deadlock”
waitObj, waitObj, mPermits
0

36

Visual Analysis of Fair Semaphore Acquire (T5)

FairSemaphore

Critical
Section

mWaitQ
3 S walit() atomically releases
A et A e 0 the waitObj,; monitor lock
= = & blocks until it is notified
waitobj, waitObj, mPermits
0

37

Visual Analysis of
Fair Semaphore Release

(T4)

38

Visual Analysis of Fair Semaphore Release (T,)

\ Enter monitor FairSemaphore
object
_,,z
4‘

Critical
Section

Thread T, releases longest
waiting thread, i.e., thread
7, waiting on waitObj, |rairSemaphore s =
new FairSemaphore (1) ;

A = PN -z // Thread T4

s.release() ;

mPermits

0

waitObj, waitObjg,

Thread T, could be thread T, or a different thread altogether

Visual Analysis of Fair Semaphore Release (T,)

FairSemaphore

‘ Acquire
—)Z lock
LY

mWaitQ Must synchronize on

Critical
Section

intrinsic (monitor) lock
~% — to update permit count
WA | MA | & wait queue safely
i i i . mPermits
waitObj, waitObj,
0

40

Visual Analysis of Fair Semaphore Release (T,)

FairSemaphore

Critical
Section

mWaitQ | \

*Z
T,

Clial
Soction

waitObj,

->
Block on
monitor condition T

-
Blgck o
monitor condition T2

A

tical

Critica
Section

next (waitObj,)

mPermits

0

If a "next” waiter (waitObj,) is
in wait queue another thread is
waiting to acquire semaphore,
so don’t increment permit count

41

Visual Analysis of Fair Semaphore Release (T,)

FairSemaphore

Critical

Section I
mWaitQ ‘ \ Must acquire the mqnito_r
lock on the next waitObyj,

he c Acquire g
oo conatn 75 Lock monitar condition Tg

mPermits

waitObjg

next
(waitObj,) O

42

Visual Analysis of Fair Semaphore Release (T,)

FairSemaphore

Critical
Section

Inform thread blocked on
next waitObj, in acquire()
that a permit’s available

T, % monitor condition

g j Unblock T, on q

A ¢

i mPermits

waitObj,

next
(waitObj,) 0

43

Visual Analysis of Fair Semaphore Release (T,)

FairSemaphore

Critical
Section

—yz Waiting | Unlock the next monitor
T, o object so thread T; waiting
In acquire() can continue
e
A _>Z ! /
waitObj, St eme 4 MPermits
next \J
(waitObj,) 0

44

Visual Analysis of Fair Semaphore Release (T,)

FairSemaphore

Critical
Section

-»Z Waiting | Release intrinsic
T, onlock (monitor) lock & leave
the monitor object’s
critical section
Scton ermits
next
(waM 0

45

Visual Analysis of Fair Semaphore Release (T,)

FairSemaphore

Critical
Section

mWaitQ

-
Block on
moniter condition Ty

mPermits

1

If there are no waiting
threads increment the permit
count by 1 so another thread

can acquire the semaphore

46

End of Implementing a Fair
Semaphore with the
Specific Notification Pattern

47

