
The Specific Notification Pattern:

“Fair” Semaphore Semantics

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 

Integrated Systems 

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Understand the Specific Notification

pattern

• Be aware of the semantics of “fair”
semaphores



3

An Overview of Fair 
Semaphore Semantics



4

• Threads calling acquire() on a 
“fair” semaphore obtain permits 
in “first-in, first-out” (FIFO) order

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Semaphore.html

Overview of Fair Semaphore Semantics

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Semaphore.html


5

• Threads calling acquire() on a 
“fair” semaphore obtain permits 
in “first-in, first-out” (FIFO) order

• FIFO ordering applies to 
internal points of execution 
within semaphore methods

Overview of Fair Semaphore Semantics



6

• Threads calling acquire() on a 
“fair” semaphore obtain permits 
in “first-in, first-out” (FIFO) order

• FIFO ordering applies to 
internal points of execution 
within semaphore methods

• e.g., one thread can invoke 
acquire() before another, but 
reach the ordering point 
after the other

Overview of Fair Semaphore Semantics



7

• Threads calling acquire() on a 
“fair” semaphore obtain permits 
in “first-in, first-out” (FIFO) order

• FIFO ordering applies to 
internal points of execution 
within semaphore methods

• The Specific Notification 
pattern provides an effective 
model for implementing fair 
semaphore semantics

Overview of Fair Semaphore Semantics

See www.dre.vanderbilt.edu/~schmidt/PDF/
specific-notification.pdf (especially Listing 3) 

http://www.dre.vanderbilt.edu/~schmidt/PDF/specific-notification.pdf


8

End of the Specific 
Notification Pattern: Fair 
Semaphore Semantics



The Specific Notification Pattern:

Implementing a “Fair” Semaphore

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 

Integrated Systems 

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


10

Learning Objectives in this Part of the Lesson
• Understand the Specific Notification

pattern

• Be aware of the semantics of “fair”
semaphores

• Recognize how to implement a “fair”
semaphore using the Specific 
Notification pattern

See www.dre.vanderbilt.edu/~schmidt/PDF/
specific-notification.pdf (especially Listing 3) 

http://www.dre.vanderbilt.edu/~schmidt/PDF/specific-notification.pdf


Visual Analysis of
Fair Semaphore Acquire

(T1 & T2)



12

FairSemaphore

Critical 
Section

T1

Enter monitor 
object

FairSemaphore s = 

new FairSemaphore(1);

...

// Thread T1

s.acquire();

1

mPermits

Visual Analysis of Fair Semaphore Acquire (T1 & T2)

Create a fair semaphore 
with a single permit



13

FairSemaphore

Critical 
Section

T1

Enter monitor 
object

FairSemaphore s = 

new FairSemaphore(1);

...

// Thread T1

s.acquire();

1

mPermits

Visual Analysis of Fair Semaphore Acquire (T1 & T2)

Thread T1 acquires the 
semaphore immediately 

since there are no waiters



14

Critical 
Section

1

mPermits

FairSemaphore

T1

Acquire 
Lock

Synchronize access via 
intrinsic (monitor) lock to 
protect the object’s state 

from race conditions

Visual Analysis of Fair Semaphore Acquire (T1 & T2)



15

Critical 
Section

T1

FairSemaphore

0

mPermits

waitLock

If queue is empty & permit 
count is greater than 0 

decrement count & return

This is the “fast path”

Visual Analysis of Fair Semaphore Acquire (T1 & T2)



16

Critical 
Section

T1

FairSemaphore

mWaitQ

0

mPermits

Release intrinsic 
(monitor) lock & leave 
the monitor object’s 

critical section

Visual Analysis of Fair Semaphore Acquire (T1 & T2)



17

FairSemaphore

Critical 
Section

T2

Enter monitor 
object

FairSemaphore s = 

new FairSemaphore(1);

...

// Thread T2

s.acquire();

0

mPermits

Visual Analysis of Fair Semaphore Acquire (T1 & T2)

Thread T2 blocks in 
acquire() since no 

permits are available



18

T2

Critical 
Section

0

mPermits

FairSemaphore

waitObjA

Create a new waitObjA that 
can be synchronized, queued 
in the wait queue, & waited 

upon by thread T2

This waiting happens outside of the FairSemaphore’s critical section

Visual Analysis of Fair Semaphore Acquire (T1 & T2)



19

Critical 
Section

T2

FairSemaphore

0

mPermits

waitObjA

Acquire 
Lock

Must synchronize on waitObjA
to ensure that it’s not deleted 

prematurely in release()

Visual Analysis of Fair Semaphore Acquire (T1 & T2)



20

Critical 
Section

T2

FairSemaphore

0

mPermits

Acquire 
Lock

Must also synchronize on 
the intrinsic (monitor) lock 
to update wait queue safely

waitObjA

Visual Analysis of Fair Semaphore Acquire (T1 & T2)



21

Critical 
Section

FairSemaphore

mWaitQ

0

mPermits

Add waitObjA to the 
end of the wait queue, 

i.e., in FIFO order

waitObjA

Visual Analysis of Fair Semaphore Acquire (T1 & T2)

T2



22

Critical 
Section

FairSemaphore

0

mPermits

T2

mWaitQ

Release intrinsic (monitor) 
lock & leave the monitor 
object’s critical section

Visual Analysis of Fair Semaphore Acquire (T1 & T2)

waitObjA



23

Critical 
Section

FairSemaphore

0

mPermits

mWaitQ

T2

wait() must be made with 
waitObjA synchronized, but w/out 

holding the intrinsic (monitor) 
lock to avoid “self-deadlock”

Visual Analysis of Fair Semaphore Acquire (T1 & T2)

waitObjA



24

Critical 
Section

FairSemaphore

0

mPermits

mWaitQ

T2

Release 
lock

Block on 
monitor condition

wait() atomically releases the 
waitObjA monitor lock & blocks

Visual Analysis of Fair Semaphore Acquire (T1 & T2)

waitObjA



25

Critical 
Section

FairSemaphore

0

mPermits

mWaitQ

Here’s what happens when a Java InterruptedException (IE) is thrown 
in the acquire() method during a blocking call to wait() on a waitObj

T2

Block on 
monitor condition

Visual Analysis of Fair Semaphore Acquire (T1 & T2)

waitObjA



26

Critical 
Section

FairSemaphore

0

mPermits

mWaitQ

T2

Acquire 
Lock

Visual Analysis of Fair Semaphore Acquire (T1 & T2)

Must reacquire intrinsic 
(monitor) lock in the catch 
clause to access the wait 

queue safely

waitObjA



27

Critical 
Section

FairSemaphore

0

mPermits

mWaitQ

Visual Analysis of Fair Semaphore Acquire (T1 & T2)

Try removing waitObjA from wait 
queue (if it’s not on the queue 

another thread has released it, so 
give back permit via release())

T2



28

Critical 
Section

FairSemaphore

0

mPermits

mWaitQ

Visual Analysis of Fair Semaphore Acquire (T1 & T2)

Rethrow the 
InterruptedException

T2



29

Visual Analysis of
Fair Semaphore Acquire

(T3)



30

FairSemaphore

Critical 
Section

T3

Enter monitor 
object

FairSemaphore s = 

new FairSemaphore(1);

...

// Thread T3

s.acquire();

0

mPermits

mWaitQ

T2

Release 
lock

Block on 
monitor condition

Visual Analysis of Fair Semaphore Acquire (T3)

waitObjB

Thread T3 blocks in 
acquire() since there’s 

already a waiter



31

T3

Critical 
Section

0

mPermits

FairSemaphore

waitObjB

mWaitQ

T2

Release 
lock

Block on 
monitor condition

Visual Analysis of Fair Semaphore Acquire (T3)

Create another waitObjB that 
can be synchronized, queued, 
& waited upon by thread T3

waitObjB



32

Critical 
Section

T3

FairSemaphore

0

mPermits

Acquire 
Lock

mWaitQ

T2

Release 
lock

Block on 
monitor condition

Visual Analysis of Fair Semaphore Acquire (T3)

Synchronize on waitObjB 

to ensure it’s not deleted 
prematurely in release()

waitObjB

waitObjB



33

Critical 
Section

T3

FairSemaphore

0

mPermits

mWaitQ

T2

Release 
lock

Block on 
monitor condition

Visual Analysis of Fair Semaphore Acquire (T3)

Must synchronize on the 
intrinsic (monitor) lock to 
update wait queue safely

waitObjB

waitObjB



34

Critical 
Section

FairSemaphore

mWaitQ

0

mPermits
waitObjA waitObjB

Visual Analysis of Fair Semaphore Acquire (T3)

Add new waitObjB to end of 
wait queue, i.e., in FIFO order

T3



35

Critical 
Section

FairSemaphore

0

mPermits

T3

mWaitQ

Visual Analysis of Fair Semaphore Acquire (T3)

waitObjA waitObjB

Release intrinsic 
(monitor) lock & leave 
the monitor object’s 

critical section



36

Critical 
Section

FairSemaphore

0

mPermits

mWaitQ

Visual Analysis of Fair Semaphore Acquire (T3)

waitObjA waitObjB

wait() on waitObjB must be 
made w/ waitObjB synchronized, 
but w/out holding monitor lock 

to avoid “self-deadlock”



37

Critical 
Section

FairSemaphore

0

mPermits

mWaitQ

Visual Analysis of Fair Semaphore Acquire (T3)

waitObjA waitObjB

wait() atomically releases 
the waitObjB monitor lock 
& blocks until it is notified



38

Visual Analysis of
Fair Semaphore Release

(T4)



39

T4

FairSemaphore s = 

new FairSemaphore(1);

...

// Thread T4

s.release();

Critical 
Section

FairSemaphore

0

mPermits

mWaitQ

Enter monitor 
object

Visual Analysis of Fair Semaphore Release (T4)

waitObjA waitObjB

Thread T4 releases longest 
waiting thread, i.e., thread 

T2 waiting on waitObjA

Thread T4 could be thread T1 or a different thread altogether



40

Critical 
Section

FairSemaphore

0

mPermits

mWaitQ

Acquire
lock

T1

Visual Analysis of Fair Semaphore Release (T4)

waitObjA waitObjB

Must synchronize on 
intrinsic (monitor) lock 
to update permit count 

& wait queue safely



41

Critical 
Section

FairSemaphore

0

mPermits

mWaitQ

T1

next (waitObjA)

Visual Analysis of Fair Semaphore Release (T4)

waitObjB

If a “next” waiter (waitObjA) is 
in wait queue another thread is 
waiting to acquire semaphore, 

so don’t increment permit count



42

Critical 
Section

FairSemaphore

0

mPermits

mWaitQ

Acquire 
Lock

T1

Visual Analysis of Fair Semaphore Release (T4)

Must acquire the monitor 
lock on the next waitObjA

waitObjB
next 

(waitObjA)



43

Critical 
Section

FairSemaphore

0

mPermits

mWaitQ

T1

Unblock T2 on 
monitor condition

Visual Analysis of Fair Semaphore Release (T4)

Inform thread blocked on 
next waitObjA in acquire() 
that a permit’s available

waitObjB
next 

(waitObjA)



44

Critical 
Section

FairSemaphore

0

mPermits

mWaitQ

T1 Release 
& leave

Waiting 
on lock

Visual Analysis of Fair Semaphore Release (T4)

Unlock the next monitor 
object so thread T1 waiting 
in acquire() can continue

waitObjB
next 

(waitObjA)



45

Critical 
Section

FairSemaphore

0

mPermits

T1

Waiting 
on lock

mWaitQ

Visual Analysis of Fair Semaphore Release (T4)

Release intrinsic 
(monitor) lock & leave 
the monitor object’s 

critical section

waitObjB
next 

(waitObjA)



46

Critical 
Section

FairSemaphore

1

mPermits

mWaitQ

Visual Analysis of Fair Semaphore Release (T4)

If there are no waiting 
threads increment the permit 
count by 1 so another thread 
can acquire the semaphore



47

End of Implementing a Fair 
Semaphore with the 

Specific Notification Pattern


