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Learning Objectives in this Part of the Lesson

« Understand the Specific Notification
pattern
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Abstract

Java supports thread synchronization by means of monitor-
like prumitives. The weak semantics of Java's signaling
mechanism provides little control over the order in which
threads acquire resources, which encourages the use of the
Haphazard Notification pattern, in which an arbitrary
thread is selected from a set of threads competing for a
resource. For synchronization problems in which such
arbitrary selection of threads is unacceptable. the Specific
Notification pattern may be used to designate exactly which
thread should proceed. Specific Notification provides an
explicit mechanism for thread selection and scheduling.

0. Introduction

To study Java's threads, I first tackled
some of the classic exercises, like the
“Dining Philosophers™ and the “Readers
and Writers™ The sclutions that I
obtained were reascmable but I felt
uncomfortable with the degree to which
I had to depend on serendipitous
treatment with respect to contention for
locks and notifications. The selutions
were free of deadlock, but were not fair
in all circumstances. I thought I might
have to resign myyself to tolerating some
unfairness in Java. Next. I built a multi-
threaded NNTP! client, in which several
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threads could have active requests
outstanding with an NNTP server. The
fundamental correctness of this class
depended on waiting threads being
reactivated in evacily the right order to
receive their responses from the server.
In coding this class I applied the Specific
Motification — mechanism  described
below. With new msight, I returned to
the earlier exercises and found that
Specific Notification provided complete
solutions to those problems. I therefore
propose the Specific Notification pattern.

Section 1 summarizes the semantics of
Java's thread synchronization
mechanisms, contrasting  them with
classical momnitors; this section may be
omitted by readers who have a detailed
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Overview of the Specific Notification Pattern

 Context

. . -
to cooperate by synchronizing access
to shared resources in a specific way

« e.g., FIFO, LIFO, priority, etc.

—
« A family of threads in Java that need Z! *g* g!4
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 Problem
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a.k.a., "Haphazard Notification”
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 Problem

« Java built-in monitor objects provide
apps no control over the order in
which threads acquire a resource, e.g.

« Scheduling of threads after notify()
or notifyAll()
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« Solution — Apply the Specific
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Abstract

Java supports thread synchronization by means of monitor-
like prumitives. The weak semantics of Java's signaling
mechanism provides little control over the order in which
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Haphazard Notification pattern, in which an arbitrary
thread is selected from a set of threads competing for a
resource. For synchronization problems in which such
arbitrary selection of threads is unacceptable. the Specific
Notification pattern may be used to designate exactly which
thread should proceed. Specific Notification provides an
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threads could have active requests
outstanding with an NNTP server. The
fundamental correctness of this class
depended on waiting threads being
reactivated in evacily the right order to
receive their responses from the server.
In coding this class I applied the Specific
Motification — mechanism  described
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See www.dre.vanderbilt.edu/~schmidt/PDF/

specific-notification.pdf (especially Listing 3)
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Overview of the Specific Notification Pattern

« Solution — Apply the Specific
Notification pattern

» Provide a non-haphazard mechanism
for selecting/scheduling threads
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threads could have active requests
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« Solution — Apply the Specific
Notification pattern

» Designate exactly which thread in a
family of threads should proceed
after notify() or notifyAll()
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Overview of the Specific Notification Pattern

« Solution Outline .
Critical

 Put threads to sleep via wait() Section
calls in monitor objects

mWaitQ
£ $
A A
waitLock, waitLockg mPermits
A

Can also use ReentrantLock & ConditionObject
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« Solution Outline

 Put threads to sleep via wait()
calls in monitor objects

« One monitor object is used
for each thread that must
be individually notified

Critical

Section
mWaitQ
% %
waitLock, waitLock,

mPermits

0
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« Solution Outline

Critical
Section
A thread waiting on its monitor JA 75!
object is notified in a specific _
Order mWaitQ waitLock,
- e.g., FIFO, LIFO, priority, etc. A ~¥
£ F REQ AR ( |
L A -k | waitLock, mPermits
0)
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End of the Specific Notification
Pattern: Introduction
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