Douglas C. Schmidt
@ d.schmidi@vanderbilt.edu
- www.dre.vanderhilt.edu/~schmidt

E ’ Institute for Software
Integrated Systems
Vanderbilt University

Nashuille, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

 Understand how Java built-in monitor objects provide waiting & notification
mechanisms that coordinate threads running in a concurrent program

1. Enter monitor object

4. notifyAll()

2. Acquire
lock ! -
-7 <
! 3. wait() _’Z
Critical 5. Release
Section lock

kﬁ 6. Leave monitor object

See github.com/douglascraigschmidt/POSA/tree/
master/ex/M3/0Queues/SimpleBlockingBoundedQueue

https://github.com/douglascraigschmidt/POSA/tree/master/ex/M3/Queues/SimpleBlockingBoundedQueue

Java Built-in Waiting &
Notification Mechanisms

Java Built-in Waiting & Notification Mechanisms

Java synchronized methods & statements only
provide a partial solution to concurrent programs

Java Built-in Waiting & Notification Mechanisms

 Java monitor objects allow threads -»?
to coordinate their interactions § - T,
Acquire lock I3 —>§
g T
_>Z ! Wait on condition
Tz Running

Critical Section Thread

Java Built-in Waiting & Notification Mechanisms

- Java monitor objects allow threads void wait() — Causes the current thread

to coordinate their interactions to wait until another thread invokes
- via the wait(), notify(), & the notify() method or the
notifyAll() methods notifyAll() method for this object

void notify() — Wakes up a single thread
that is waiting on this object's
monitor

void notifyAll() — Wakes up all threads
that are waiting on this object's
monitor

See docs.oracle.com/javase/8/docs/api/java/lang/Object.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.htmlwait()
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.htmlnotify()
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.htmlnotifyAll()

Java Built-in Waiting & Notification Mechanisms

- Java monitor objects allow threads void wait() — Causes the current thread

to coordinate their interactions to wait until another thread invokes
- via the wait(), notify(), & the notify() method or the
notifyAll() methods notifyAll() method for this object

http://docs.oracle.com/javase/7/docs/api/java/lang/Object.htmlwait()

Java Built-in Waiting & Notification Mechanisms

 Java monitor objects allow threads
to coordinate their interactions

« via the wait(), notify(), &
notifyAll() methods

void notify() — Wakes up a single thread
that is waiting on this object's
monitor

http://docs.oracle.com/javase/7/docs/api/java/lang/Object.htmlnotify()

Java Built-in Waiting & Notification Mechanisms

 Java monitor objects allow threads
to coordinate their interactions

« via the wait(), notify(), &
notifyAll() methods

void notifyAll() — Wakes up all threads
that are waiting on this object's
monitor

http://docs.oracle.com/javase/7/docs/api/java/lang/Object.htmlnotifyAll()

Java Built-in Waiting & Notification Mechanisms

Java monitor objects allow threads
to coordinate their interactions

« via the wait(), notify(), &
notifyAll() methods

void notifyAll() — Wakes up all threads
that are waiting on this object's
monitor

See en.wikipedia.org/wiki/Thundering herd problem

http://docs.oracle.com/javase/7/docs/api/java/lang/Object.htmlnotifyAll()
https://en.wikipedia.org/wiki/Thundering_herd_problem

Java Built-in Waiting & Notification Mechanisms

« Java built-in monitor objects

have one entrance gqueue & »
: . Entrance Critical
one walit queue Section
Queue

enter L > O leave >

\/
O
O
e

O
= o
— ®
Q =
c
_]/\H n-\/
OO =

Wait Queue

See en.wikipedia.org/wiki/Monitor_(synchronization)#Implicit condition variable monitors

http://en.wikipedia.org/wiki/Monitor_(synchronization)#Implicit_condition_variable_monitors

Java Built-in Waiting & Notification Mechanisms

« Java built-in monitor objects

have one entrance queue & Ent Critical
one wait queue ntrance Section
Queue

enter L>Q ch > O leave >

L®

-

otifie

n

g
O O C v

Wait Queue

Serializes thread access to
monitor object’s critical section

12

Java Built-in Waiting & Notification Mechanisms

« Java built-in monitor objects

have one entrance queue & Entran Critical
one wait queue ntrance Section
Queue

enter L>Q ch > O leave >

L®

-

otifie

n

g
O O C v

Wait Queue

All threads that call wait() are
parked on the wait qgueue

13

Java Built-in Waiting & Notification Mechanisms

« Java built-in monitor objects

have one entrance queue & Entran Critical
one wait queue ntrance Section
Queue

enter L > O leave >

\/
O
O
e

O
= o
— ®
Q =
c
_j/\u n-\/
OO =

Wait Queue

All notify() & notifyAll() calls
also apply to the wait queue

14

Java Built-in Waiting & Notification Mechanisms

« Java built-in monitor objects class SimpleBlockingBoundedQueue<E>
have one entrance queue & implements BlockingQueue<E> {

one wait queue T .
public void put (E msg) {

synchronized (this) ({
while (isFull()) wait();
mList.add (msqg) ;

This class fixes the "busy notifyall () ;
waiting” problem with }
BusySynchronizedQueue }
public E take() ... {

synchronized (this) ({
while (isEmpty()) wait()
notifyAll () ;
return mList.poll () ;

}
}

See github.com/douglascraigschmidt/POSA/tree/
master/ex/M3/0Queues/SimpleBlockingBoundedQueue

https://github.com/douglascraigschmidt/POSA/tree/master/ex/M3/Queues/SimpleBlockingBoundedQueue

Java Built-in Waiting & Notification Mechanisms

« Java built-in monitor objects
have one entrance queue &
one wait queue, e.qg.

» put() calls wait() when
the queue is full

Atomically releases the intrinsic
lock & sleeps on the wait gueue

YOU SHALL

NOT PASS

class SimpleBlockingBoundedQueue<E>

implements BlockingQueue<E> {

public void put (E msg) {
synchronized (this) ({
while (isFull()) wait() ;
mList.add (msqg) ;
notifyAll () ;
}
}

public E take() ... {
synchronized (this) ({
while (isEmpty()) wait()
notifyAll () ;
return mList.poll () ;
}
}

See en.wikipedia.org/wiki/Guarded suspension

http://en.wikipedia.org/wiki/Guarded_suspension

Java Built-in Waiting & Notification Mechanisms

« Java built-in monitor objects class SimpleBlockingBoundedQueue<E>
have one entrance queue & implements BlockingQueue<E> {
one wait queue, e.qg.

» put() calls wait() when
the queue is full

public void put (E msg) {
synchronized (this) ({
while (isFull()) wait();

« It also calls notifyAll() mList.add(msg) ;
after adding an item } notifyall();
}
Must wake up all the threads Pu:lizhiozi‘::;)(thio) { {
blocked on the wait queue ywhi le (isEmpty()) wait():
since waiters are non-uniform _ Pty ’
notifyAll () ;

return mList.poll () ;
}
}

See upcoming lesson on “Java Monitor Objects. Usage Considerations” |

Java Built-in Waiting & Notification Mechanisms

Java built-in monitor objects
have one entrance queue &

one wait queue, e.qg.

» put() calls wait() when
the queue is full

« It also calls notifyAll()
after adding an item

notifyAll() is required due to
a Java monitor object only
having one wait queue

class SimpleBlockingBoundedQueue<E>

implements BlockingQueue<E> {

public void put (E msg) {
synchronized (this) ({
while (isFull()) wait();
mList.add (msqg) ;
notifyAll () ;
}
}

public E take() ... {
synchronized (this) ({
while (isEmpty()) wait()
notifyAll () ;
return mList.poll () ;
}

See stackoverflow.com/questions/37026/java-notify

-vs-notifyall-all-over-again/3186336#3186336

http://stackoverflow.com/questions/37026/java-notify-vs-notifyall-all-over-again/3186336#3186336

Java Built-in Waiting & Notification Mechanisms

« Java built-in monitor objects class SimpleBlockingBoundedQueue<E>
have one entrance queue & implements BlockingQueue<E> {

one wait queue, e.q. T .
public void put (E msg) {

synchronized (this) ({
while (isFull()) wait() ;
« take() calls wait() when mList.add (msg) ;
the queue is empty notifyall();

}
YOU SHALL

}

public E take() ... {
synchronized (this) {
while (isEmpty()) wait()

notifyAll () ;
return mList.poll();\\\\\
NOT PASS }

} Atomically releases the intrinsic
" lock & sleeps on the wait queue

See en.wikipedia.org/wiki/Guarded suspension

http://en.wikipedia.org/wiki/Guarded_suspension

Java Built-in Waiting & Notification Mechanisms

« Java built-in monitor objects class SimpleBlockingBoundedQueue<E>
have one entrance queue & implements BlockingQueue<E> {

one wait queue, e.q. T .
public void put (E msg) {

synchronized (this) ({
while (isFull()) wait();

« take() calls wait() when mList.add (msg) ;
the queue is empty } notifyall();
« It also calls notifyAll() }

after removing an item

public E take() ... {
synchronized (this) {
while (isEmpty()) wait():

notifyAll () ;
t mList.poll() ;
Must wake up all the threads /re LEy 0 1o

blocked on the wait queue } }
since waiters are non-uniform

Again, notifyAll() is required here due to the limitations
of Java monitor objects, which only have one wait queue |

Java Built-in Waiting & Notification Mechanisms

« Java built-in monitor objects class SimpleBlockingBoundedQueue<E>
have one entrance queue & implements BlockingQueue<E> {
one wait queue

public void put (E msg) {
synchronized (this) ({
while (isFull()) wait();
mList.add (msqg) ;
notifyAll () ;

The put() & take() methods are }
examined later in this lesson }

public E take() ... {
synchronized (this) ({
while (isEmpty()) wait()
notifyAll () ;
return mList.poll () ;

}
}

See upcoming lesson on “Java Monitor Objects: Coordination Example Implermentatior!’

Java Built-in Waiting & Notification Mechanisms

« Java built-in monitor object synchronizers

can be implemented w/POSIX-like Entrance Critical
synchronizers Queue Section

enter i O leave -
00 > >
] 3
2 o
o0 =«
Wait
Queue

22

Java Built-in Waiting & Notification Mechanisms

« Java built-in monitor object synchronizers
can be implemented w/POSIX-like

) Entrance Critical
synchronizers, e.q. Queue Section
» Entrance queue is akin to

a POSIX recursive mutex enter OOy > - ave >

o

otifie

wait

n

O O

Wait
Queue

\

See computing.linl.gov/tutorials/pthreads/#Mutexes

https://computing.llnl.gov/tutorials/pthreads/#ConditionVariables

Java Built-in Waiting & Notification Mechanisms

« Java built-in monitor object synchronizers

can be implemented w/POSIX-like . . Critica)
synchronizers, e.q. Queue A Section
enter %O 0 > O leave >
R O}
- Wait queue is akin to a | i I
POSIX condition variable :af_a -
S 2
O O @

See computing.linl.gov/tutorials/pthreads/# ConditionVariables

https://computing.llnl.gov/tutorials/pthreads/#ConditionVariables

Java Built-in Waiting & Notification Mechanisms

« Java built-in monitor object synchronizers
can be implemented w/POSIX-like . . Critical
synchronizers, e.q. Queue A Section

enter O ch > O leave >

- Wait queue is akin to a |
POSIX condition variable ks -
« Similar to Java S =
ConditionObjects L) o
o0 e

Wait

Queue !E R ? _,Z "?

See earlier lessons on “Java ConditionObjects"”

Java Built-in Waiting & Notification Mechanisms

Java built-in monitor object synchronizers
can be implemented w/POSIX-like

synchronizers, e.g.

bool try_enter (TRAPS) ;
void enter (TRAPS);
void exit(bool not suspended, TRAPS);
void wait(jlong millis, bool interruptable, TRAPS);
void notify(TRAPS);
void notifyAll(TRAPS);
® The Implementathn IN the // Use the following at your own risk
Oracle JDK uses lower-level intptr_t - complete_exit(TRAPS);
. Y void reenter(intptr_t recursions, TRAPS);
locking primitives
private:
void AddWaiter (ObjectWaiter * waiter) ;
static void DeferredInitialize();

See github.com/JetBrains/ijdk8u hotspot/blob/
master/src/share/vm/runtime/objectMonitor.cpp

https://github.com/JetBrains/jdk8u_hotspot/blob/master/src/share/vm/runtime/objectMonitor.cpp

End of Java Monitor Object:
Coordination Methods

27

