Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderbilt University
Nashuille, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Be aware of common compIeX|t|es in concurrent programs like BuggyQueue

@ <<owns>>
<<needs>> /—) (\
—_
Z T,
<<owns>> \’@(—/ <<needs>>

Starving Thread

Higher Priority Threads waiting...

2

Evaluating the Buggy
Producer/Consumer

Evaluating the Buggy Producer/Consumer

» Key question: what's the output & why?

1 Buggy « CONSUMEN producer : & buggyQueue :
QueueTeﬁ Thread ~ Thread ﬁg BuggyQueue-

main() : : new) -

: new() I :

new() ! , :

: start() ! :

! run() !

start() run() :

offer(“...")

0\

Evaluating the Buggy Producer/Consumer
» Key question: what's the output & why?

1 Buggy « CONSUMer « producer : & buggyQueue :
QueueTeﬁ Thread ~ Thread éé BuggyQueue-

Exception in thread "Thread-1" java.lang.NullPointerException
at java.util.LinkedList.unlink(LinkedList.java:211)
at java.util.LinkedList.remove(LinkedList.java:526)

at edu.vandy.buggyqueue.model.BuggyQueue.poll(BuggyQueue.java:52)
at edu.vandy.BuggyQueueTest$Consumer.run(BuggyQueueTest.java:104)

at java.lang.Thread.run(Thread.java

offer(".. D
poll) >

1

Depending on the implementation of the BuggyQueue class & the
underlying LinkedList the app & test program may simply “hang”

Evaluating the Buggy Producer/Consumer
» Key question: what's the output & why?

static class BuggyQueue<E> implements BoundedQueue<E> ({
private LinkedList<E> mList = new LinkedList<E>() ;

public boolean offer(E e) ({
if ('isFull()) { mList.add(e); return true; }

else return false;

There’s no protection against
critical sections being run by

multiple threads concurrently

public E poll() {
if ('isEmpty()) return mList.remove (0); else return false; }

}

Note that this implementation is not synchronized. If multiple threads access a linked list
concurrently, and at least one of the threads modifies the list structurally, it must be synchronized
externally. (A structural modification is any operation that adds or deletes one or more elements;
merely setting the value of an element is not a structural modification.)

See docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html

http://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html

Common Complexities in
Concurrent Programs

Common Complexities in Concurrent Programs

« Concurrent programs are hard to develop & debug, due to various inherent &
accidental complexities

See stackoverflow.com/guestions/499634/how
-to-detect-and-debug-multi-threading-problems

http://stackoverflow.com/questions/499634/how-to-detect-and-debug-multi-threading-problems

Common Complexities in Concurrent Programs

» Concurrent programs are hard to develop & debug, due to various inherent &
accidental complexities, e.q.

« Deadlock

« Occurs when two or more competing actions are each waiting for the
other to finish, & thus none ever do

Zﬂ
<<needs>> \ < <OWNs>>
-
<<0owWns>> \)6’(/ <<needs>>
&y
Ll

See en.wikipedia.org/wiki/Deadlock

http://en.wikipedia.org/wiki/Deadlock

Common Complexities in Concurrent Programs

» Concurrent programs are hard to develop & debug, due to various inherent &
accidental complexities, e.q.

RunninglJava Thread
« Starvation

« A thread is perpetually denied
necessary resources to process
its work

N —

Starving Thread

Higher Priority Threads waiting...

See en.wikipedia.org/wiki/Starvation (computer science)

https://en.wikipedia.org/wiki/Starvation_(computer_science)

Common Complexities in Concurrent Programs

» Concurrent programs are hard to develop & debug, due to various inherent &
accidental complexities, e.q.

e Race conditions

« Arise when an application
depends on the sequence
or timing of threads for it
to operate properly

See en.wikipedia.org/wiki/Race condition

http://en.wikipedia.org/wiki/Race_condition

Common Complexities in Concurrent Programs

« Concurrent programs are hard to develop & debug, due to various inherent &
accidental complexities, e.q.

« Tool limitations

* e.g., behavior in the debugger
doesn’t reflect actual behavior

e The act of observing a

system can alter its state

See en.wikipedia.org/wiki/Heisenbug

http://en.wikipedia.org/wiki/Heisenbug

Common Complexities in Concurrent Programs

« Some concurrency complexities can be fixed by applying Java built-in monitor
object mechanisms

SimpleBlocking

Producer g5 —> RURUS < ——— o Consumer
synchronized put()

synchronized poll()
_>§ synchronized offer() —>§
synchronized poll()

K 2 2

<<contains>> |1 1| <<contains>>

Wait Queue Entrance Queue

13

Common Complexities in Concurrent Programs

« There are also helpful techniques for | DrDobb's i
debugging concurrent software P vontoor o v T

Home Articles News Blogs Source Code Dobb's on VD Dobb's TV
.NET

Cloud Mobile CHC++ Tools

JvM Languages

C/C++ 5|
wiwest (0| [EJIEY | [snore | @ B3 | & Permaiink

Multithreaded Debugging Techniques

Past a Comment

Debugging mulfithreaded applications can be a challenging task.

Debugging multithreaded applications can be a challenging task. The increased complexity of
multithreaded programs results in 2 large number of possible states that the program may be in
at any given time. Detarmining the state of the program at the time of failure can be difficult:
understanding why a particular stats is troublesome can be even more difficult. Multithreaded
programs often fail in unexpected ways, and often in a nondeterministic fashion. Bugs may
manifest themselves in a sporadic fashion, frustrating developers who are accustomed to
troubleshocting issues that are consistently reproducible and pradictable. Finally, multithreaded
applications can fail in a drastic fashion-deadlocks causs an application or waorse yet, the entire
system, to hang. Usars tend to find these types of failures to be unacceptable.

General Debug Technigues

Regardless of which library or platform that you are developing on, several general principles can
be applied to debugging multithreaded software applications.

The first technigue for eliminating bugs in multithreaded code is to aveid introducing the bug in
the first place. Many software defects can be pravented by using proper software development
practices. The later a problem is found in the product development lifecycle, the more expensive
it is to fix. Given the complexity of multithreaded programs, it is critical that multithreaded
applications are properly designed up front.

How aften have you, as a software developer, expsrienced the following situation? Someons on
the team that you're working on gets a great idea for & new product or feature. A guick prototype
that illustrates the idea is implemanted znd a quick demao, using 2 trivizl use-case, is presented
to management. Management loves the idea and immediately informs sales and marketing of the
new product or feature. Marketing then informs the customer of the feature, and in order to make
a sale, promises the customer the feature in the next release. Meanwhile, the engineering team,
whaose original intent of presenting the idea was to get resources to properly implement the
product or feature sometime in the futurae, is now faced with the task of delivering on 2 customsr
commitment immediately. As 3 result of time constraints, it is often the cass that the only option
is to take the prototype, and try to tumn it into preduction code.

See www.drdobbs.com/cpp/multithreaded-debugging-techniques/199200938

http://www.drdobbs.com/cpp/multithreaded-debugging-techniques/199200938

Common Complexities in Concurrent Programs

« There are also helpful techniques for

debugging concurrent software, e

.g.

« Use well-established concurrency

& synchronization patterns

Concurrent

2 B a8 8?‘&-"—1
| The Java™ Series

@Sun

Programming in Java"
Second Edition

Design Principles and Patterns

Thread-per &
Request

Thread-per @
Session

Active
Object

Half Syme/
Half Asyne

Aceeptor

g'hrei;d FL]eiad?r.n" Object
.g?ec clc 0 .nwers Lifetime
Storage Manager
! : Reaet
i | i Double || Thread-
i Checked Safe
i Proactor Locking Interface
External Wrapper Scoped Strategized
Polymorphism Facade Locking Locking
Concurrency Event Initialization | | Synchronization
Patterns Patterns Patterns Patterns

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

A Pattern language for
Distributed Computing

uuuuuuu

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

EOIIINEY Patteras lor Concurrent
fl Objects

See en.wikipedia.org/wiki/Concurrency pattern

https://en.wikipedia.org/wiki/Concurrency_pattern

Common Complexities in Concurrent Programs

» There are also helpful techniques for
debugging concurrent software, e.g.

 Conduct code reviews

Is the code
following coding
Standards |
Guidelines?

Can | Unit Test
or Debug the
code easily?

Am | able to
understand the
code easily?

Is the code
duplicated more
than twice?

Is the function or
class too big?

Basic Code Reviewer

See en.wikipedia.org/wiki/Code review

https://en.wikipedia.org/wiki/Code_review

Common Complexities in Concurrent Programs

» There are also helpful techniques for
debugging concurrent software, e.g.

« Apply analysis tools

Static Analysis Tools for
Concurrency

= FindBugs — works on Java. In the list of bugs detected all of the “Multithreaded
correctness” bugs are relevant to concurrency. Command-line interface or eclipse
plugin (eclipse plugin update site:http://findbugs.cs.umd.edu/eclipse/)

Lint —a UNIX tool for C

= JLint — a Java version of Lint that is available as stand alone or eclipse plugin

(eclipse plugin update site:http://www.jutils.com/eclipse-update)

Parasoft JTest — commercial tool that combines static analysis and testing. Has

capability to check for thread safety in multithreaded Java programs.

= Coverity Static Analysis and Static Analysis Custom Checkers — commercial tool
that can be used to create custom static analyzers to find concurrency bugs in
C/C++ programs.

« GrammaTech’s CodeSonar — commercial tool that can detect a special case race
condition and locking issues in C/C++ (see datasheet for list of all bugs detected).

« Chord — static and dynamic analysis tool for Java (listed above as well).

JSure for Concurrency — a commercial tool from SurelLogic that is currently
available in early release.
ESC/Java 2 - can detect race conditions and deadlocks — requires annotation

(more...)

= Relay - static race detection

= RacerX — uses flow-sensitive static analysis tool for detection race conditions and
deadlocks in C [paper] [slides]

SyncChecker — a tool developed by F. Otto and T. Moschny for finding race
conditions and deadlocks in Java. Reduce false positives by combining static
analysis with points-to and may-happen-in-parallel (MHP) information.

= Warlock — race detection tool for C — requires annotation.

See www.sarlab.ca/blog/2012/03/02/static-analysis-tools-for-concurrency

http://www.sqrlab.ca/blog/2012/03/02/static-analysis-tools-for-concurrency

Common Complexities in Concurrent Programs

« There are also helpful techniques for SCITIECEEEEES

> main
——>» base_class::hase_class

debugging concurrent software, e.g. e L] astronony]

lass::hase_class in Bs

—>» class_a::some_helper
x=[1]
w=[181

_a::some_helper in Bs
thar in B.816s
counter=
{—— bhase_c foobar in B.@16s
——» base_class::hase_class
counter=[8]
paran=[default h paraml
{— base_class::hase_class in Bs

 Instrument code with logging
& tracing statements

will _fail=[@1

- - »
class::tbar in B8.815s
bh::har in B.815=
counter=[2]
{—— base_class::foobar in B.815s
all methods called. compiling results
collectiontinteger_list, 2 items)

[B1=[1871]
[11=[21

——> base_class::hase_class
counter=[8]
param=[default b paraml
¢—— hase_class::hase_class in Bz
—-—> class_g

—>» class_h::har

will fail=[11

throwing an exception as I was configured to fail
ad {—— class_h::har in Bs
* +«{— base_class::foobar in Bs
hound to happend
£—— main in BA.B%?3s
Prezs any key to continue . . .

See www.dre.vanderbilt.edu/~schmidt/PDF/DSIS Chapter Waddington.pdf

http://www.dre.vanderbilt.edu/~schmidt/PDF/DSIS_Chapter_Waddington.pdf

