Douglas C. Schmidt
@ d.schmidi@vanderbilt.edu
- www.dre.vanderhilt.edu/~schmidt

E ’ Institute for Software
Integrated Systems
Vanderbilt University

Nashuille, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand what monitors are & know how Java built-in monitor objects can
ensure mutual exclusion & coordination between threads

1. Enter monitor object

—)Z |

g

! "g 4. notifyAll()

S — {ERRRRRR—————————SS8S8S8N8S8S8§8§8§8NNNN—_—.-———_———
2. Acquire

Jock ! _}Z *Z _,g

I 3. Wat()

Critical 5. Release
Section lock

{
‘ 6. Leave monitor object

See www.artima.com/insidejvm/ed?2/threadsynch.html

http://www.artima.com/insidejvm/ed2/threadsynch.html

Learning Objectives in this Part of the Lesson

0]
. . =3
« Recognize a human known use of monitors @
V Post-
Operation
Check Waiting
in Room

— SV
Pre-Operation&

Waiting Room]:B Operating
f Room

Critical Section

Pre-Operation
Waiting Room

SINCEE]

file://///localhost/upload.wikimedia.org/wikipedia/commons/d/db/Monitor_(synchronization)-SU.png

Overview of Monitors

Overview of Monitors

« A monitor is a synchronization mechanism designed
in the early 1970s

Billeoard

ANATIONAL NEWSWEEKLY TAINMENT

lhn Rock’n’Roll Hits

Will It Go Round

Brother Louie

1 Croeodlle Rock 6 !.'.'NEL"..I“
2 let'sGetitOn 7 |Frankenstein
Manis Gage Thwe Kigar Wintor Gomtp
3 %ml(Train 8 Love Train
Gladrs Kright & The s ;o o Yeiio
w
4 [mestenyion | g G
5

SHARED CLASSES
PER BRINCH HANSEN

(1973)

The author discusses the close relationship between data and operations and
suggests that a compiler should be able to check that data structures are ac-
cessed by meaningful procedures only. This idea leads to the introduction of
shared classes—a programming notation for the monitor concept. The nota-
tion is illustrated by a message buffer for concurrent processes.

We will discuss the close relationship between data and operations and use
it to define a very important form of resource protection.

If we consider variables of primitive types such as integer and boolean, it
is quite possible that values of different types will be represented by identical
bit strings at the mac e level. For example both the boolean value true
and the integer value 1 might be represented by the bit string

000...001

in single machine words.

So data of different types are distinguished not only by the representa-
tion of their values, but also by the operations associated with the type
An integer, for example, is a datum subject only to arithmetic operations,
comparisons, and assignments involving other data subject to the same re-
strictions.

Now consider structured types. Take for example a variable that repre-
ssage buffer which contains a sequences of messages sent, but not

yet received. A static picture of process communication can be defined by

sents a n

P. Brinch Hansen, Operating System Principles, Section 7.2 Class Concept, Prentice Hall,
Englewood Cliffs, NJ, (July 1073), 226-232. Copyright © 2001 Per Brinch Hansen.

See en.wikipedia.org/wiki/Monitor (synchronization)

http://en.wikipedia.org/wiki/Monitor_(synchronization)

Overview of Monitors

« A monitor provides three capabilities to concurrent programs

-> _>Z
_>Z \ —)Z T3 T4
T, T

A

Critical Section

Overview of Monitors

« A monitor provides three capabilities to concurrent programs
1. Only one thread at a time has -*?

. T,
mutually exclusive access to a $ - -»Z
critical section pcauire ook T21 13

A =
Running

Critical Section Thread

See en.wikipedia.org/wiki/Critical section

http://en.wikipedia.org/wiki/Critical_section

Overview of Monitors

« A monitor provides three capabilities to concurrent programs

& -

Acquire lock I3 _’?

2. Threads running in a monitor can g T
block awaiting certain conditions _,? ! Wait on condition
T

to become true

Running
Critical Section Thread

Overview of Monitors

« A monitor provides three capabilities to concurrent programs

Unblock on wait queue

Acqwre

lock ?
T Running —yg

Critical Section Thread T

3. A thread can notify one or more
threads that conditions they're
waiting on have been met

Overview of Built-in
Java Monitor Objects

10

Overview of Java Built-in Monitor Objects

 All objects in Java can be used as built-in monitor objects, which support
two types of thread synchronization

A Java
m10) Monitor Object m2()
Thread, | — —=synchronized m1() == ~ | Thread,
synchronized m2()

See en.wikipedia.org/wiki/Monitor (synchronization)#Implicit condition variable monitors

https://en.wikipedia.org/wiki/Monitor_(synchronization)#Implicit_condition_variable_monitors

Overview of Java Built-in Monitor Objects

« All objects in Java can be used as built-in monitor objects, which support
two types of thread synchronization

« Mutual exclusion — allows concurrent access & updates to shared data
without race conditions

A Java
m10) Monitor Object m2()
Thread, | — —=synchronized m1() == — | Thread,
synchronized m2()

12

Overview of Java Built-in Monitor Objects

 All objects in Java can be used as built-in monitor objects, which support
two types of thread synchronization

« Mutual exclusion — allows concurrent access & updates to shared data
without race conditions

A Java
m10) Monitor Object m2()
Thread, | — —=synchronized m1() == — | Thread,
synchronized m2()

_>§ <<contains>> _)é
All Java objects have

one "intrinsic lock”
associated with it

Java’s execution environment supports mutual exclusion via
an entrance queue & synchronized methods/statements

Overview of Java Built-in Monitor Objects

 All objects in Java can be used as built-in monitor objects, which support
two types of thread synchronization

« Coordination — Ensures computations run properly, e.g., in the right order,
at the right time, under the right conditions, etc.

A Java
m10) Monitor Object m2()
Thread, | — —=synchronized m1() == ~ | Thread,
synchronized m2()

_>§ t <<contains>> _>§

1

Entrance Queue

14

Overview of Java Built-in Monitor Objects

 All objects in Java can be used as built-in monitor objects, which support
two types of thread synchronization

« Coordination — Ensures computations run properly, e.qg., in the right order,
at the right time, under the right conditions, etc.

A Java
m1() Monitor Object m2()
Thread, | —=-|synchronized m1() < ~ | Thread,
synchronized m2()

_>§ <<contains>>

t <<contains>> _>§

1

Wait Queue Entrance Queue

All Java objects have one "intrinsic
condition” associated with it

Java’s execution environment supports coordination
via a wait queue & notification mechanisms

Overview of Java Built-in Monitor Objects

« These mechanisms implement a variant of the Monitor Object pattern

Monitor
m10) Object m2()
Thread, | —{synchronized m1() <=
synchronized m2()

_>§ <<contains>> , t <<contains>>

0..*

0..*
Monitor Condition Monitor Lock
wait()

notify()

notifyAll()

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

lllllllllllllllllll

See www.dre.vanderbilt.edu/~schmidt/PDF/monitor.pdf

http://www.dre.vanderbilt.edu/~schmidt/PDF/monitor.pdf

Overview of Java Built-in Monitor Objects

« These mechanisms implement a variant of the Monitor Object pattern

« Intent — Ensure that only one method runs within an
object & allow an object’s methods to cooperatively _
schedule their execution sequences ' %

ARCHITECTURE

lllllllllllllllllll

(R 1) §
Monitor - .
m1() Object m2()
Thread, | = —=|synchronized m1() < — | Thread,
synchronized m2()

_>§ <<contains>> , t <<contains>> _>§

0..* 0..%
Monitor Condition Monitor Lock
wait()
notify()
notifyAll()

17

Human Known Use
of Monitors

18

Human Know Use of Monitors

« A human known use of a monitor
iS an operating room in a hospital

Jojue

T

Check
in

g

Waiting
Room

—n\/

—n\\/.

Operating z
Room

Waiting
Room
Critical Section
Waiting .
Room %
<
o :

19

file://///localhost/upload.wikimedia.org/wikipedia/commons/d/db/Monitor_(synchronization)-SU.png

End of Java Monitor
Objects: Introduction

20

