Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Lesson

<<Java Interface>>
@ Function<T,R>

@ apply(T)
© compose(Function<? super V,? extends T=>):Function<V,R>

@ andThen(Function<? super R,? extends V=):Function<T,V>
&identity():Function<T.T>

« Know how to apply the Java Concurrent e To B
HashMap class to design a “memoizer” '

<<Java Class>>
® Memoizer<K,V>

FTAG: String

&' mCache: ConcurrentMap<K, V>

o mFunction: Function<K, V>

@ Memoizer(Function<K V> Map<K,V>)

© apply(K)

Memoizer caches function call results & returns cached results for same inputs

Overview of Memoizer

Overview of Memoization

« Memoization is optimization technique used to speed up programs

See en.wikipedia.org/wiki/Memoization

https://en.wikipedia.org/wiki/Memoization

Overview of Memoization

« Memoization is optimization technique used to speed up programs
« It caches the results of expensive function calls
Value computeIfAbsent (Key key) {

1. If key doesn’t exist in map then
perform a long-running computation
associated with key & store the
resulting value via the key

2.

Return value associated with key Memoizer

CACHE

Overview of Memoization

« Memoization is optimization technique used to speed up programs

« When the same inputs occur again the cached
results are simply returned

Value computeIfAbsent (Key key) ({
1. If key already exists in map return
cached value associated w/key Memoizer

¥.14,13

Designing a Memoizer
with ConcurrentHashMap

Designing a Memoizer with ConcurrentHashMap

« Memoizer defines a cache that returns <<Java Interface>>
a value produced by applying a (long- UFunction<iR>
running) function to a key oapplyM |
@ compose(Function<? super V,? extends T>):Function<V,R>

@ andThen(Function<? super R,? extends V=>):Function<T, V>
& identity():Function<T T>

-mFunction UQ

<<Java Class>>
® Memoizer<K,V>

FTAG: String

& mCache: ConcurrentMap<K V=

o mFunction: Function<K V>

@ Memoizer(Function<K,V> Map<K, V=)
@ apply(K)

See PrimeExecutorService/app/src/main/java/vandy/mooc/prime/utils/Memoizer.java

https://github.com/douglascraigschmidt/POSA/blob/master/ex/M4/Primes/PrimeExecutorService/app/src/main/java/vandy/mooc/prime/utils/Memoizer.java

Designing a Memoizer with ConcurrentHashMap

« Memoizer defines a cache that returns <<Java Interface>>

a value produced by applying a (long- UFunction<iR>

running) function to a key oapplyM |
@ compose(Function<? super V,? extends T>):Function<V,R>
@ andThen(Function<? super R,? extends V=>):Function<T, V>
& identity():Function<T T>

BRIAN GOETZ v
SasErH BOWBEER, DAVID HOLMES, -mFunction/ 0. 4\

<<Java Class>>
® Memoizer<K,V>

STAG: String
& mCache: ConcurrentMap<K V=

o mFunction: Function<K V>
@ Memoizer(Function<K,V> Map<K, V=)
@ apply(K)

This class is based on 'Java Concurrency in Practice” by Brian Goetz et al,

See jcip.net

http://jcip.net/

Designing a Memoizer with ConcurrentHashMap

« Memoizer defines a cache that returns <<Java Interface>>
a value produced by applying a (long- UFunction<iR>
running) function to a key oapplyM |
@ compose(Function<? super V,? extends T>):Function<V,R>
e A value that’s been Computed for a @ andThen(Function<? super R.? extends V=):Function<TV>
03identity():FunctionﬁT,ﬁ

key is returned, rather than applying

the function to recompute it -mFunction 04

<<Java Class>>
® Memoizer<K,V>

FTAG: String

o mCache: ConcurrentMap<K, V>

o mFunction: Function<K V>

@ Memoizer(Function<K,V> Map<K, V=)
@ apply(K)

12

Designing a Memoizer with ConcurrentHashMap

<<Java Interface>>

« Memoizer defines a cache that returns
a value produced by applying a (long- UFunction<iR>
running) function to a key | |
© compose(Function<? super V,? extends T>):Function<V R>

@ andThen(Function<? super R,? extends V=>):Function<T,V>
osidentity():FunctionczT.T::

A

-mFunction/ 0.}

« A memoizer can be used whenever

a Function is expected :
<<Java Class>>
Function<Long, Long> func = ®Memoizer<K,V>
doMemoization -jmesm@
? new Memoizer<> DFmCachg: ConcurrgntMap«:KVb
(Prj Check i SPr] o' mFunction: Function<K V>
rim rs::1 rim
etheckers S S @ Memoizer(Function<K,V> Map<K, V=)
new ConcurrentHashMap()) 5 | appiyK)

PrimeCheckers: :isPrime;

new PrimeCallable (randomNumber, func));

See docs.oracle.com/javase/8/docs/api/java/util/function/Function.html

https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html

Designing a Memoizer with ConcurrentHashMap

<<Java Interface>>

« Memoizer defines a cache that returns
a value produced by applying a (long- UFunction<iR>
running) function to a key | |
© compose(Function<? super V,? extends T>):Function<V R>

@ andThen(Function<? super R,? extends V=>):Function<T,V>
& identity():Function<T T>

A

-mFunction/ 0.}

« A memoizer can be used whenever

a Function is expected — C?law)
Function<Long, Long> func = ®Memoizer<K,V>
FTAG: String

doMemoization .
> new Memoizer? Use memoizer o mCache: ConcurrentMap<K, V>
: o mFunction: Function<K V>

PrimeCheckers: :isPrim
(eCheckers S €/ @ Memoizer(Function<K, V> Map<K,V>)
new ConcurrentHashMap()); | applyK)

PrimeCheckers: :isPrime;

new PrimeCallable (randomNumber, func));

See docs.oracle.com/javase/8/docs/api/java/util/function/Function.html

https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html

Designing a Memoizer with ConcurrentHashMap

<<Java Interface>>

« Memoizer defines a cache that returns
a value produced by applying a (long- UFunction<iR>
running) function to a key | |
© compose(Function<? super V,? extends T>):Function<V R>

@ andThen(Function<? super R,? extends V=>):Function<T,V>
osidentity()rFunctionczT.T::

A

-mFunction/ 0.}

« A memoizer can be used whenever

a Function is expected :
<<Java Class>>
Function<Long, Long> func = ®Memoizer<K,V>
doMemoization -ﬁmesm@
? new Memoizer<> DFmCachg: ConcurrgntMap«:KVb
(Prj Check i SPr] o' mFunction: Function<K V>
rim rs::1 rim
etheckers S S @ Memoizer(Function<K,V> Map<K, V=)
new ConcurrentHashMap()) 5 | appiyK)

PrimeCheckers: :isPrime;

\

Don't use memoizer

new PrimeCallable (randomNumber, func));

See docs.oracle.com/javase/8/docs/api/java/util/function/Function.html

https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html

Designing a Memoizer with ConcurrentHashMap

<<Java Interface>>

« Memoizer defines a cache that returns
a value produced by applying a (long- UFunction<iR>
running) function to a key | |
© compose(Function<? super V,? extends T>):Function<V R>

@ andThen(Function<? super R,? extends V=>):Function<T,V>
osidentity():Fum:tionczT_T::

A

-mFunction/ 0.}

« A memoizer can be used whenever

a Function is expected :
<<Java Class>>
Function<Long, Long> func = ®Memoizer<K,V>
doMemoization FTAG: String
? new Memoizer<> DEmCachg: ConcurrgntMapciK,Vb
PrimeCheckers : : isPrime o mFunction: Function<K V>
(" ! @ Memoizer(Function<K,V> Map<K, V=)
new ConcurrentHashMap()) 5 | appiyK)
PrimeCheckers: :isPrime; \\\
func /S identical, regardless of which branch is chosen
/

new PrimeCallable (randomNumber, func));

See docs.oracle.com/javase/8/docs/api/java/util/function/Function.html

https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html

Designing a Memoizer with ConcurrentHashMap

« Memoizer uses a ConcurrentHashMap <<Java Interface>>

to minimize synchronization overhead LA

@ apply(T)
@ compose(Function<? super V,? extends T>):Function<V,R>

@ andThen(Function<? super R,? extends V=>):Function<T, V>
& identity():Function<T T>

-mFunction UQ

<<Java Class>>
® Memoizer<K,V>

FTA

o mCache: ConcurrentMap<K V>

o mFunction: Function<K, V>

@ Memoizer(Function<K, V> Map<K,V>)
@ apply(K)

See docs.oracle.com/javase/8/docs/api/iava/util/concurrent/ConcurrentHashMap.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html

Designing a Memoizer with ConcurrentHashMap

« Memoizer uses a ConcurrentHashMap <<Java Interface>>
to minimize synchronization overhead e
. : @ apply(T)
A group Of lOCkS guard dlﬁ:erent @ compose(Function<? super V,? extends T>):Function<V,R>
subsets of the hash buckets @ andThen(Function<? super R,? extends V>):Function<T V>
ConcurrentHashMap osidentity()rFunctionczT.T::
s — — — — -mFunction 04‘
((g\\ ((fﬂ ((i\\ Segment ((i\\ :
YUY Locks _~
0 1 2 15 :
<<Java Class>>
/ l \ ®Memoizer<K,V>
Hash Hash Hash Hash - -
Bucket Bucket Bucket Bucket o mCache: ConcurrentMap<K.V>
-~ X S ¢ mrunction: Function<K V>
. . @ Memoizer(Function<K,V> Map<K,V>)
Contention is low due to use of multiple locks o apepm,'ffr(e

See www.ibm.com/developerworks/java/library/j-jtp08223

http://www.ibm.com/developerworks/java/library/j-jtp08223

Designing a Memoizer with ConcurrentHashMap

« Memoizer uses a ConcurrentHashMap <<Java Interface>>
to minimize synchronization overhead OFunction<TR>

@ apply(T)
@ compose(Function<? super V,? extends T>):Function<V,R>

@ andThen(Function<? super R,? extends V=>):Function<T,V>
& identity():Function<T T>

 apply() uses computelfAbsent() to Y
ensure a function only runs when ety
key/value pair is added to cache

<<Java Class>>
® Memoizer<K,V>

FTAG: String

o mCache: ConcurrentMap<K, V>

o mFunction: Function<K V>

@ Memoizer(Function<K, V> Map<K,V>)

@ apply(K)

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/
ConcurrentHashMap.html#computelfAbsent

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html#computeIfAbsent-K-java.util.function.Function-

Designing a Memoizer with ConcurrentHashMap

« Memoizer uses a ConcurrentHashMap <<Java Interface>>
to minimize synchronization overhead OFunction<TR>

@ apply(T)

@ compose(Function<? super V,? extends T>):Function<V,R>
@ andThen(Function<? super R,? extends V=>):Function<T,V>
osidentity()rFunctionczT.T::

« apply() uses computelfAbsent() to
ensure a function only runs when
key/value pair is added to cache, e.qg.

« This method implements “atomic

-mFunction 04‘

<<Java Class>>

check-then-act” semantics © Memoizer<K,V>
FTAG: String
return map.computeIfAbsent FmCache: ConcurrentMap<K V>
(key, o mFunction: Function<K V>

k -> new V(mappingFunc(k))) emoizer(Function<K, V> Map<K,V>)

See dig.cs.illinois.edu/papers/checkThenAct.pdf

http://dig.cs.illinois.edu/papers/checkThenAct.pdf

Designing a Memoizer with ConcurrentHashMap

« Memoizer uses a ConcurrentHashMap <<Java Interface>>
to minimize synchronization overhead OFunction<TR>

@ apply(T)

@ compose(Function<? super V,? extends T>):Function<V,R>
@ andThen(Function<? super R,? extends V=>):Function<T,V>
osidentity():FunctionczT.T::

« apply() uses computelfAbsent() to
ensure a function only runs when
key/value pair is added to cache, e.qg.

-mFunction 04‘

<<Java Class>>

®Memoizer<K,V>
/ : FTAG: String
) Here > the eqUIV_alent S_ec_luence Of o mCache: ConcurrentMap<K, V>
Java (non-atomic/-optimized) code & mFunction: Function<K_V>
V value = map.get (key) . emoizer(Function<K, V> Map<K,V>)

if (value == null) {
value = mappingFunc.apply (key) ;
if (value '= null) map.put(key, wvalue);
}

return value;

See dig.cs.illinois.edu/papers/checkThenAct.pdf

http://dig.cs.illinois.edu/papers/checkThenAct.pdf

Designing a Memoizer with ConcurrentHashMap

» Memoizer uses a ConcurrentHashMap

to minimize synchronization overhead °°mPuteIfAbsent (PCy)
computeIlfAbsent (pC,)

P
Memoizer
« apply() uses computelfAbsent() to

ensure a function only runs when \ég

key/value pair is added to cache
computeIlfAbsent (pC,)

computeIlfAbsent (pC,)

/

Only one computation per key is
performed even if multiple threads call
computelfAbsent() using the same key

22

End of JavaConcurrent
Collections: Designing a
Memoizer with
ConcurrentHashMap

23

