
Java Concurrent Collections:

Designing a Memoizer with 

ConcurrentHashMap

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 

Integrated Systems 

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


4

• Understand the capabilities of Java’s 
concurrent collections

• Recognize the capabilities of Java’s 
ConcurrentHashMap & BlockingQueue

• Know how to apply the Java Concurrent
HashMap class to design a “memoizer”

Learning Objectives in this Lesson

Memoizer caches function call results & returns cached results for same inputs



5

Overview of Memoizer



6

Overview of Memoization

See en.wikipedia.org/wiki/Memoization

• Memoization is optimization technique used to speed up programs

https://en.wikipedia.org/wiki/Memoization


7

• Memoization is optimization technique used to speed up programs

• It caches the results of expensive function calls

Memoizer

Value computeIfAbsent(Key key) {

1. If key doesn’t exist in map then

perform a long-running computation 

associated with key & store the

resulting value via the key

2. Return value associated with key

}

Overview of Memoization



8

• Memoization is optimization technique used to speed up programs

• It caches the results of expensive function calls

• When the same inputs occur again the cached 
results are simply returned

Value computeIfAbsent(Key key) {

1. If key already exists in map return

cached value associated w/key

}
Memoizer

Overview of Memoization



9

Designing a Memoizer
with ConcurrentHashMap



10See PrimeExecutorService/app/src/main/java/vandy/mooc/prime/utils/Memoizer.java

• Memoizer defines a cache that returns 
a value produced by applying a (long-
running) function to a key

Designing a Memoizer with ConcurrentHashMap

https://github.com/douglascraigschmidt/POSA/blob/master/ex/M4/Primes/PrimeExecutorService/app/src/main/java/vandy/mooc/prime/utils/Memoizer.java


11See jcip.net

• Memoizer defines a cache that returns 
a value produced by applying a (long-
running) function to a key

Designing a Memoizer with ConcurrentHashMap

This class is based on “Java Concurrency in Practice” by Brian Goetz et al.

http://jcip.net/


12

• Memoizer defines a cache that returns 
a value produced by applying a (long-
running) function to a key

• A value that’s been computed for a 
key is returned, rather than applying
the function to recompute it

Designing a Memoizer with ConcurrentHashMap



13See docs.oracle.com/javase/8/docs/api/java/util/function/Function.html

• Memoizer defines a cache that returns 
a value produced by applying a (long-
running) function to a key

• A value that’s been computed for a 
key is returned, rather than applying
the function to recompute it

• A memoizer can be used whenever 
a Function is expected

Designing a Memoizer with ConcurrentHashMap

Function<Long, Long> func =

doMemoization

? new Memoizer<>

(PrimeCheckers::isPrime,

new ConcurrentHashMap());

: PrimeCheckers::isPrime;

... 

new PrimeCallable(randomNumber, func));

...

https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html


14See docs.oracle.com/javase/8/docs/api/java/util/function/Function.html

• Memoizer defines a cache that returns 
a value produced by applying a (long-
running) function to a key

• A value that’s been computed for a 
key is returned, rather than applying
the function to recompute it

• A memoizer can be used whenever 
a Function is expected

Designing a Memoizer with ConcurrentHashMap

Function<Long, Long> func =

doMemoization

? new Memoizer<>

(PrimeCheckers::isPrime,

new ConcurrentHashMap());

: PrimeCheckers::isPrime;

... 

new PrimeCallable(randomNumber, func)); ...

Use memoizer

https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html


15See docs.oracle.com/javase/8/docs/api/java/util/function/Function.html

• Memoizer defines a cache that returns 
a value produced by applying a (long-
running) function to a key

• A value that’s been computed for a 
key is returned, rather than applying
the function to recompute it

• A memoizer can be used whenever 
a Function is expected

Designing a Memoizer with ConcurrentHashMap

Function<Long, Long> func =

doMemoization

? new Memoizer<>

(PrimeCheckers::isPrime,

new ConcurrentHashMap());

: PrimeCheckers::isPrime;

... 

new PrimeCallable(randomNumber, func)); ...

Don’t use memoizer

https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html


16

func is identical, regardless of which branch is chosen

See docs.oracle.com/javase/8/docs/api/java/util/function/Function.html

• Memoizer defines a cache that returns 
a value produced by applying a (long-
running) function to a key

• A value that’s been computed for a 
key is returned, rather than applying
the function to recompute it

• A memoizer can be used whenever 
a Function is expected

Designing a Memoizer with ConcurrentHashMap

Function<Long, Long> func =

doMemoization

? new Memoizer<>

(PrimeCheckers::isPrime,

new ConcurrentHashMap());

: PrimeCheckers::isPrime;

... 

new PrimeCallable(randomNumber, func)); ...

https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html


17

• Memoizer uses a ConcurrentHashMap
to minimize synchronization overhead

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html

Designing a Memoizer with ConcurrentHashMap

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html


18

• Memoizer uses a ConcurrentHashMap
to minimize synchronization overhead

• A group of locks guard different 
subsets of the hash buckets

See www.ibm.com/developerworks/java/library/j-jtp08223

…
0 1 2 15

Hash
Bucket

Hash
Bucket

Hash
Bucket

Hash
Bucket

Segment
Locks

ConcurrentHashMap

Designing a Memoizer with ConcurrentHashMap

Contention is low due to use of multiple locks

http://www.ibm.com/developerworks/java/library/j-jtp08223


19

• Memoizer uses a ConcurrentHashMap
to minimize synchronization overhead

• A group of locks guard different 
subsets of the hash buckets

• apply() uses computeIfAbsent() to 
ensure a function only runs when 
key/value pair is added to cache

Designing a Memoizer with ConcurrentHashMap

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/
ConcurrentHashMap.html#computeIfAbsent

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html#computeIfAbsent-K-java.util.function.Function-


20

Designing a Memoizer with ConcurrentHashMap
• Memoizer uses a ConcurrentHashMap

to minimize synchronization overhead

• A group of locks guard different 
subsets of the hash buckets

• apply() uses computeIfAbsent() to 
ensure a function only runs when 
key/value pair is added to cache, e.g.

• This method implements “atomic 
check-then-act” semantics

See dig.cs.illinois.edu/papers/checkThenAct.pdf

return map.computeIfAbsent

(key, 

k -> new V(mappingFunc(k)));

http://dig.cs.illinois.edu/papers/checkThenAct.pdf


21

Designing a Memoizer with ConcurrentHashMap
• Memoizer uses a ConcurrentHashMap

to minimize synchronization overhead

• A group of locks guard different 
subsets of the hash buckets

• apply() uses computeIfAbsent() to 
ensure a function only runs when 
key/value pair is added to cache, e.g.

• This method implements “atomic 
check-then-act” semantics

• Here’s the equivalent sequence of 
Java (non-atomic/-optimized) code

See dig.cs.illinois.edu/papers/checkThenAct.pdf

V value = map.get(key);

if (value == null) { 

value = mappingFunc.apply(key);

if (value != null) map.put(key, value);

}

return value;

http://dig.cs.illinois.edu/papers/checkThenAct.pdf


22

Designing a Memoizer with ConcurrentHashMap
• Memoizer uses a ConcurrentHashMap

to minimize synchronization overhead

• A group of locks guard different 
subsets of the hash buckets

• apply() uses computeIfAbsent() to 
ensure a function only runs when 
key/value pair is added to cache

Memoizer

computeIfAbsent(pC1)

computeIfAbsent(pC1)

computeIfAbsent(pC2)

computeIfAbsent(pC1)

Only one computation per key is 
performed even if multiple threads call 
computeIfAbsent() using the same key



23

End of JavaConcurrent
Collections: Designing a 

Memoizer with 
ConcurrentHashMap


