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• Understand the capabilities of Java’s 
concurrent collections

• Recognize the capabilities of Java’s 
ConcurrentHashMap & BlockingQueue

• Know how to apply the Java Concurrent
HashMap class to design a “memoizer”

Learning Objectives in this Lesson

Memoizer caches function call results & returns cached results for same inputs
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Overview of Memoizer
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Overview of Memoization

See en.wikipedia.org/wiki/Memoization

• Memoization is optimization technique used to speed up programs

https://en.wikipedia.org/wiki/Memoization
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• Memoization is optimization technique used to speed up programs

• It caches the results of expensive function calls

Memoizer

Value computeIfAbsent(Key key) {

1. If key doesn’t exist in map then

perform a long-running computation 

associated with key & store the

resulting value via the key

2. Return value associated with key

}

Overview of Memoization
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• Memoization is optimization technique used to speed up programs

• It caches the results of expensive function calls

• When the same inputs occur again the cached 
results are simply returned

Value computeIfAbsent(Key key) {

1. If key already exists in map return

cached value associated w/key

}
Memoizer

Overview of Memoization
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Designing a Memoizer
with ConcurrentHashMap



10See PrimeExecutorService/app/src/main/java/vandy/mooc/prime/utils/Memoizer.java

• Memoizer defines a cache that returns 
a value produced by applying a (long-
running) function to a key

Designing a Memoizer with ConcurrentHashMap

https://github.com/douglascraigschmidt/POSA/blob/master/ex/M4/Primes/PrimeExecutorService/app/src/main/java/vandy/mooc/prime/utils/Memoizer.java


11See jcip.net

• Memoizer defines a cache that returns 
a value produced by applying a (long-
running) function to a key

Designing a Memoizer with ConcurrentHashMap

This class is based on “Java Concurrency in Practice” by Brian Goetz et al.

http://jcip.net/
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• Memoizer defines a cache that returns 
a value produced by applying a (long-
running) function to a key

• A value that’s been computed for a 
key is returned, rather than applying
the function to recompute it

Designing a Memoizer with ConcurrentHashMap



13See docs.oracle.com/javase/8/docs/api/java/util/function/Function.html

• Memoizer defines a cache that returns 
a value produced by applying a (long-
running) function to a key

• A value that’s been computed for a 
key is returned, rather than applying
the function to recompute it

• A memoizer can be used whenever 
a Function is expected

Designing a Memoizer with ConcurrentHashMap

Function<Long, Long> func =

doMemoization

? new Memoizer<>

(PrimeCheckers::isPrime,

new ConcurrentHashMap());

: PrimeCheckers::isPrime;

... 

new PrimeCallable(randomNumber, func));

...

https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html


14See docs.oracle.com/javase/8/docs/api/java/util/function/Function.html

• Memoizer defines a cache that returns 
a value produced by applying a (long-
running) function to a key

• A value that’s been computed for a 
key is returned, rather than applying
the function to recompute it

• A memoizer can be used whenever 
a Function is expected

Designing a Memoizer with ConcurrentHashMap

Function<Long, Long> func =

doMemoization

? new Memoizer<>

(PrimeCheckers::isPrime,

new ConcurrentHashMap());

: PrimeCheckers::isPrime;

... 

new PrimeCallable(randomNumber, func)); ...

Use memoizer

https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html


15See docs.oracle.com/javase/8/docs/api/java/util/function/Function.html

• Memoizer defines a cache that returns 
a value produced by applying a (long-
running) function to a key

• A value that’s been computed for a 
key is returned, rather than applying
the function to recompute it

• A memoizer can be used whenever 
a Function is expected

Designing a Memoizer with ConcurrentHashMap

Function<Long, Long> func =

doMemoization

? new Memoizer<>

(PrimeCheckers::isPrime,

new ConcurrentHashMap());

: PrimeCheckers::isPrime;

... 

new PrimeCallable(randomNumber, func)); ...

Don’t use memoizer

https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html


16

func is identical, regardless of which branch is chosen

See docs.oracle.com/javase/8/docs/api/java/util/function/Function.html

• Memoizer defines a cache that returns 
a value produced by applying a (long-
running) function to a key

• A value that’s been computed for a 
key is returned, rather than applying
the function to recompute it

• A memoizer can be used whenever 
a Function is expected

Designing a Memoizer with ConcurrentHashMap

Function<Long, Long> func =

doMemoization

? new Memoizer<>

(PrimeCheckers::isPrime,

new ConcurrentHashMap());

: PrimeCheckers::isPrime;

... 

new PrimeCallable(randomNumber, func)); ...

https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html
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• Memoizer uses a ConcurrentHashMap
to minimize synchronization overhead

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html

Designing a Memoizer with ConcurrentHashMap

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html
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• Memoizer uses a ConcurrentHashMap
to minimize synchronization overhead

• A group of locks guard different 
subsets of the hash buckets

See www.ibm.com/developerworks/java/library/j-jtp08223
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Designing a Memoizer with ConcurrentHashMap

Contention is low due to use of multiple locks

http://www.ibm.com/developerworks/java/library/j-jtp08223
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• Memoizer uses a ConcurrentHashMap
to minimize synchronization overhead

• A group of locks guard different 
subsets of the hash buckets

• apply() uses computeIfAbsent() to 
ensure a function only runs when 
key/value pair is added to cache

Designing a Memoizer with ConcurrentHashMap

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/
ConcurrentHashMap.html#computeIfAbsent

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html#computeIfAbsent-K-java.util.function.Function-
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Designing a Memoizer with ConcurrentHashMap
• Memoizer uses a ConcurrentHashMap

to minimize synchronization overhead

• A group of locks guard different 
subsets of the hash buckets

• apply() uses computeIfAbsent() to 
ensure a function only runs when 
key/value pair is added to cache, e.g.

• This method implements “atomic 
check-then-act” semantics

See dig.cs.illinois.edu/papers/checkThenAct.pdf

return map.computeIfAbsent

(key, 

k -> new V(mappingFunc(k)));

http://dig.cs.illinois.edu/papers/checkThenAct.pdf
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Designing a Memoizer with ConcurrentHashMap
• Memoizer uses a ConcurrentHashMap

to minimize synchronization overhead

• A group of locks guard different 
subsets of the hash buckets

• apply() uses computeIfAbsent() to 
ensure a function only runs when 
key/value pair is added to cache, e.g.

• This method implements “atomic 
check-then-act” semantics

• Here’s the equivalent sequence of 
Java (non-atomic/-optimized) code

See dig.cs.illinois.edu/papers/checkThenAct.pdf

V value = map.get(key);

if (value == null) { 

value = mappingFunc.apply(key);

if (value != null) map.put(key, value);

}

return value;

http://dig.cs.illinois.edu/papers/checkThenAct.pdf
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Designing a Memoizer with ConcurrentHashMap
• Memoizer uses a ConcurrentHashMap

to minimize synchronization overhead

• A group of locks guard different 
subsets of the hash buckets

• apply() uses computeIfAbsent() to 
ensure a function only runs when 
key/value pair is added to cache

Memoizer

computeIfAbsent(pC1)

computeIfAbsent(pC1)

computeIfAbsent(pC2)

computeIfAbsent(pC1)

Only one computation per key is 
performed even if multiple threads call 
computeIfAbsent() using the same key
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End of JavaConcurrent
Collections: Designing a 

Memoizer with 
ConcurrentHashMap


