Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderbilt University
Nashuille, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

<<Java Class==

& Thread

&' yield()-void
& currentThread(): Thread

« Recognize how Java Thread methods

\\ 144 H H
support “happens-before” relationships s e
& sleep(long,int)-void
Thread A . & Thread()
& Thread(Runnable)
Thread B @ Thread(String)
@ start()-void
» @ run()void
Everything = exit():void
before the l @ interrupt{)-void
uniock on M... & interrupted()-boolean
@ isInterrupted():boolean
-visible to o isAlive():-boolean
S m & setPriority(int)-void
after the - L
lock on M unlock M o getPriority{):int
2 & join(long)-void
j=y join{long.int)-void
¥ & join()-void

& setDaemon(boolean)void
& isDaemon():boolean

Learning Objectives in this Part of the Lesson

« Know how Java collections support
“happens-before” relationships

-~

f(;ﬂ (f ;W‘ (f i? Segment rrin
' ' — Locks —
0 1 2 15
Hash Hash }ash Haléh
Bucket Bucket Bucket Bucket

~

ConcurrentHashMap

Java Thread "Happens-
Before” Relationships

Java Thread “"Happens-Before” Relationships

 Methods in the Java Thread class establish “happen- <<Java Class>>
before” relationships @ Thread

& yield()void

Tienadih =~ ° = & currentThread(): Thread
& sleep(long)void

1 Thread B & sleep(long.int)-void

@ Thread()

’ @ Thread(Runnable)
Everything @ Thread(String)

before the o
unlock on M l @ start()void

unlock M > lock M @ run()-void

l _visible to = gxit[}:vuid |
everything m @ interrupt()-void
afterthe & & interrupted():boolean

lock on M uniock M @ isInterrupted():boolean
Y & isAlive()boolean
& setPriority(int)-void
o getPriority():int
 join(long)-void
& join{long.int)-void
& join()-void
& setDaemon(boolean):void
& isDaemon()-boolean

y

=a

=

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

Java Thread “"Happens-Before” Relationships

« Methods in the Java Thread class establish “happen-

before” relationships

« Starting a thread “happens-before” the run() hook

method of the thread is called

Thread A

Thread threadB = new Thread(..);

threadB.start(); ¢——~—— |

threadB.start()
happened before all

statements in run

Thread B

<< lava Class=>

(9 Thread

public vaid run(}{
|_—statement 1;

& yield()void

& currentThread(): Thread
& sleep(long)void

& sleep(long.int):-void

@ Thread()

@ Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted():boolean
& isAlive()boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

Java Thread “"Happens-Before” Relationships

« Methods in the Java Thread class establish “happen-
before” relationships

« Starting a thread “happens-before” the run() hook
method of the thread is called
Thread tl1l =
new Thread(() ->

System.out.println
("hello world"))

tl.start();

<< lava Class=>

(9 Thread

& yield()void

& currentThread(): Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

@ Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted():boolean
& isAlive()boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

Java Thread “"Happens-Before” Relationships

« Methods in the Java Thread class establish “happen-
before” relationships

« Starting a thread “happens-before” the run() hook
method of the thread is called
Thread tl1 =
new Thread(() ->

System.out.println
("hello world"))

tl.start (),

Create & start a new thread

<< lava Class=>

(9 Thread

& yield()void

& currentThread(): Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

@ Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted():boolean
& isAlive()boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

Java Thread “"Happens-Before” Relationships

« Methods in the Java Thread class establish “happen- <<Java Class>>
before” relationships © Thread
. - \ _ " & yield()void
Starting a thread hap_pens before” the run() hook o cumentThroad] Thread
method of the thread is called & sleepilong)wi
Thread tl = & sleep(long.int)-void
@ Thread()
new Thread(() -> . @ Thread(Runnable)
System. out .Prlntln {FThread[String}
("hello world")) ; @ start()-void

& interrupted():boolean

This lambda expression plays the @ isInterrupted()-boolean
role of the run() hook method! o isAlive(): boolean

& setPriority(int)-void

o getPriority():int

 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void

& isDaemon()-boolean

@ run()-void
tl.start(); m exit():void
@ interrupt():void

Java Thread “"Happens-Before” Relationships

« Methods in the Java Thread class establish “happen-
before” relationships

« Starting a thread “happens-before” the run() hook
method of the thread is called
Thread tl1l =
new Thread(() ->

System.out.println
("hello world"));

tl.start (),

<< lava Class=>

(9 Thread

| The state of thread t1 is consistent &
visible before run() begins to execute

& yield()void

& currentThread(): Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

@ Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted():boolean
& isAlive()boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

10

Java Thread “"Happens-Before” Relationships

 Methods in the Java Thread class establish “happen- <<Java Class>>

before” relationships @ Thread

& yield()void
& currentThread(): Thread
& sleep(long)void

« The termination of a thread “happens-before” a ﬁ?LﬁZiﬂE‘}”g'm‘}”“

jOin() with the terminated thread & Thread(Runnable)

@ Thread(String)

Thread A Thread B @ start()-void

| e)| @ run():void

Thread threadB = new Thread(..); public void run{){ = exit():void

statement 1, @ interrupt()-void

& interrupted():boolean

threadB.jain(); } @ isInterrupted():-boolean

statement 1, I & isAlive()boolean

finishing of run P) & setPriority(int)-void
method of B & getPriority():int

happened before join(long)-void
Nt & join{long.int)-void

& join()-void

& setDaemon(boolean):void

& isDaemon()-boolean

threadB.start();

11

Java Thread “Happens-Before” Relationships

 Methods in the Java Thread class establish “happen- <<Java Class>>
before” relationships @ Thread

& yield()void
& currentThread(): Thread
& sleep(long)void

i i \! pe 5 e
« The termination of a thread “happens-before” a Effezﬂ?}”ﬂ-'”ﬂ-””'d
jOin() with the terminated thread & Thread(Runnable)
Thread t1 = @ Thread|(String)
@ start()void
new Thread(() -> o run()-void
System.out.println = exit()-void
("hello world")); @ interrupt()-void
tl.start(); & interrupted():boolean

@ isInterrupted():boolean

& isAlive()boolean

& setPriority(int)-void

o getPriority():int
tl.join() ; join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

12

Java Thread “Happens-Before” Relationships

« Methods in the Java Thread class establish “happen-
before” relationships

« The termination of a thread “happens-before” a
join() with the terminated thread

Thread tl =
new Thread(() ->

System.out.println ?s(
("hello world")) ; }m

tl.start () ;

<< lava Class=>

(9 Thread

tl.Join(); Thread t1 terminates after its lambda

expression run() processing completes

& yield()void

& currentThread(): Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

@ Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted():boolean
& isAlive()boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

13

Java Thread “Happens-Before” Relationships

<< lava Class=>

(9 Thread

« Methods in the Java Thread class establish “happen-
before” relationships

& yield()void
& currentThread(): Thread
& sleep(long)void

« The termination of a thread “happens-before” a & sleepflong,int)-void

b _ : @ Thread()
join() with the terminated thread & Thread(Runnable)
Thread t1 = @ Thread(String)
@ start()void
new Thread(() -> @ run()-void
System.out.println = exit()-void

("hello world")) ;
tl.start () ;

;(iﬂ

tl.join() ;

The thread waiting on join() only resumes

@ interrupt():void

& interrupted():boolean
@ isInterrupted():boolean
& isAlive()boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

It’s processing after the thread t1 terminates

14

Java Collections "Happens-
Before” Relationships

15

Java Collections “Happens-Before” Relationships

« Methods in java.util.concurrent package classes also establish “happen-
before” relationships <interfacess

Queue<E>

' 1 I <<interface>>
. .
I
I

I
I
[PriorityQueue<E> /\
I

ConcurrentLinkedQueue<E>

LinkedList<E>

|
| HashMap<K,V> q.l SynchronousQueue<E> i
1
|
<<interfaces>> | LinkedHashMap<K,V> ArrayBlockingQueue<E> [§§ — 1
Map<K,V> 4‘ ______ I :
A I_ WeakHashMap<K,V> LinkedBlockingQueue<E> - —,

|
:_ J 1dentityHashMap<k,v> PriorityBlockingQueue<E>
I
I

DelayQueue<E> fll = = = = =

- | EnumMap<K,v>

-1 Hashtable<K,V>

<<interfaces>
ConcurrentMap<K,V> I

ConcurrentHashMap<K,V>

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/package-summary.html#MemoryVisibility

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html#MemoryVisibility

Java Collections “Happens-Before” Relationships

« Methods in java.util.concurrent package classes also establish “happen-
before” relationships

« The release of a monitor lock “happens-before” every subsequent acquire
on the same lock

Thread A Thread B

synchronized (lock) { | synchronized (lock) {

release lock by
A happened
before B got it

release lock by

B happened
before A got it

\

e.g., a ReentrantLock or exiting a
synchronized method/statement

See www.logicbig.com/tutorials/core-java-tutorial/
java-multi-threading/happens-before.html

http://www.logicbig.com/tutorials/core-java-tutorial/java-multi-threading/happens-before.html

Java Collections “Happens-Before” Relationships

« Methods in java.util.concurrent package classes also establish “happen-
before” relationships

« The release of a monitor lock “happens-before” every subsequent acquire
on the same lock

class ArrayBlockingQueue<E> class ArrayBlockingQueue<E>
R R
public void put(E e) ... { public E take() ... {
- final ReentrantlLock lock
final ReentrantlLock lock = = this.lock;
this.lock; lock.lockInterruptibly() ;
lock.lockInterruptibly () ; try { .
try { ... } finally {
} finally { lock.unlock() ;
lock.unlock () ; }

}

18

Java Collections “Happens-Before” Relationships

« Methods in java.util.concurrent package classes also establish “happen-
before” relationships

« The release of a monitor lock “happens-before” every subsequent acquire
on the same lock

class ArrayBlockingQueue<E> class ArrayBlockingQueue<E>
R R
public void put(E e) ... { public E ,take() ... {
- final ReentrantlLock lock
final ReentrantlLock lock = = this.lock;
this.lock; lock.lockInterruptibly() ;
lock.lockInterruptibly () ; try { ...
try { ... }/ £finally {
} finally { lock.unlock() ;
lock.unlock () ; }

}
}

Consider the put() & take() methods in ArrayBlockingQueue

See earlier lessons on “Java ReentrantLock” & “Java ConditionObject”

Java Collections “Happens-Before” Relationships

« Methods in java.util.concurrent package classes also establish “happen-
before” relationships

« The release of a monitor lock “happens-before” every subsequent acquire
on the same lock

class ArrayBlockingQueue<E>

class ArrayBlockingQueue<E>
{ ..

{ ...

public void put(E e) ... { public E take() ... {
. final ReentrantLock lock
final ReentrantlLock lock = = this.lock;
this.lock; lock.lockInterruptibly() ;
lock.lockInterruptibly () ; try { .
try { ... } finally {
} finally {

lock.unlock () ;
lock.unlock () ; }

} \
}

Actions prior to "releasing” the ReentrantLock must happen-
before actions subsequent to a successtul "acquiring” of this lock

See earlier lessons on “Java ReentrantLock” & “Java ConditionObject”

Java Collections “Happens-Before” Relationships

« Methods in java.util.concurrent package classes also establish “happen-
before” relationships

 Actions in a thread prior to placing an object into any concurrent collection
“happen-before” actions subsequent to the access or removal of that
element from the collection in another thread

ConcurrentMap concurrentMap = new ConcurrentHashMap () ;

// Thread tl
concurrentMap.put ("key", "value") ;

// Thread t2
Object value = concurrentMap.get ("key") ;

21

Java Collections “Happens-Before” Relationships

« Methods in java.util.concurrent package classes also establish “happen-
before” relationships

 Actions in a thread prior to placing an object into any concurrent collection
“happen-before” actions subsequent to the access or removal of that
element from the collection in another thread

ConcurrentMap concurrentMap = new ConcurrentHashMap () ;

// Thread tl
concurrentMap.put ("key", "value") ;

// Thread t2
Object value = concurrentMap.get ("key") ;

Consider a ConcurrentHashMap that supports concurrent
retrievals & high expected concurrency for updates

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html

Java Collections “Happens-Before” Relationships

« Methods in java.util.concurrent package classes also establish “happen-
before” relationships

 Actions in a thread prior to placing an object into any concurrent collection
“happen-before” actions subsequent to the access or removal of that
element from the collection in another thread

ConcurrentMap concurrentMap = new ConcurrentHashMap () ;

// Thread tl
concurrentMap.put ("key", "value");

// Thread t2
Object value = |concurrentMap.get ("key") ;

Placing a "key/value” element into a ConcurrentHashMap must
happen-before accessing or removing this element from the map

23

Java Collections “"Happens-Before” Relationships

- Java’s class libraries are responsible | s v
for ensuring these “happens-before”I e, | ey e ot Lie |06
relationships are preserved y ,

| ; Concurrency
Mlangandutil Collections ™" 0o JAR

Preferences Regular
Reflection o o csions Versioning Zip Instrumentation

24

Java Collections “"Happens-Before” Relationships

» Java’s class libraries are responsible Java Language
for ensuring these happens-before B R
relationships are preserved

Concurrency
Utilities Rt

lang and util Collections Logging Management

Preferences Ref Reflection Regular

API Objects Expressions Ve'Soning Zip Instrumentation

You don't need to understand all the nitty-gritty details of Java’s memory
model — you just need to understand how to use synchronizers properly!

End of "Happens-Before”
Relationships: Examples

26

