The AsyncTask Framework:
Example Application

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

e

Vanderhilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Learn how the AsyncTaskInterrupted

program works

starting new AsyncTask #1
tarting new AsyncTask #2
Starting new AsyncTask #3
In run() with thread id Thread[AsyncTask #1,5main] the GCD
of 1002590626 and -11530583 is -1
in run() with thread id Thread[AsyncTask #3,5main] the GCD
of 1942659237 and 1098392555 is 1
in run() with thread id Thread[AsyncTask #2,5,main] the GCD
of -825952393 and 1519916585is 1
in run() with thread id Thread[AsyncTask #3,5main] the GCD
of -1873262416 and 367737629 s 1
In run() with thread id Thread[AsyncTask #2,5,main] the GCD
o -2019154437 and 138773521 s 1
\@ln run() with thread id Thread[AsyncTask #1,5main] the GCD
‘ of 022711953 and -2054476175is-19
ill\n run() with thread id Thread[AsyncTask #2,5,main] the GCD
o 118793795 and 1874535828 s 1
(flin run() with thread id Thread[AsyncTask #3,5main] the GCD
of 320447007 and 535867874 is 1
in run() with thread id Thread[AsyncTask #1,5,main] the GCD
of 2134913728 and 2063654381 is -1
in run() with thread id Thread[AsyncTask #2,5,main] the GCD
of 1112721487 and -1280169668 is 1

100000000:3

100000000:3

of 563831462 and 495738799 is 1

In run() with thread id Thread[AsyncTask #3,5main] the GCD
of -2135772995 and 398804169 is 1

[in run() with thread id Thread[AsyncTask #1,5main] the GCD
lof 515282348 and -975949918 is -2

In run() with thread id Thread[AsyncTask #2,5,main] the GCD
lof 1614575067 and -197133826 is 1

In run() with thread id Thread[AsyncTask #3,5main] the GCD
lof 1782420469 and 897974308 is 1

In run() with thread id Thread[AsyncTask #1,5main] the GCD
lof 229063925 and 1530765367 is 1

In run() with thread id Thread[AsyncTask #2,5,main] the GCD

Wl of 7058799561 and -2033524255 is -1

In run() with thread id Thread[AsyncTask #3,5,main] the GCD
of -160463438 and -2061336140 is -2

In run() with thread id Thread[AsyncTask #1,5main] the GCD
of 831437666 and -801438944 is -2

In run() with thread id Thread[AsyncTask #2,5,main] the GCD
of -461884834 and 1869064023 is -1

In run() with thread id Thread[AsyncTask #3,5main] the GCD
of 1390815758 and -1466312329 is -1

In run{) with thread id Thread[AsyncTask #1,5main] the GCD
of 1749213427 and 1907746909 is 1

In run() with thread id Thread[AsyncTask #3,5,main] the GCD
of 1548604599 and -1423239314 is -1

Finishing AsyncTask #1 after being cancelled

Finishing AsyncTask #3 after being cancelled

Finishing AsyncTask #2 after being cancelled

100000000:3

Interrupting all 3 async tasks

See github.com/douglascraigschmidt/POSA/tree/master/ex/M5/GCD/AsyncTaskInterrupted

https://github.com/douglascraigschmidt/POSA/tree/master/ex/M5/GCD/AsyncTaskInterrupted

Runtime Behavior of the
AsyncTaskInterrupted App

Runtime Behavior of the AsyncTaskInterrupted App

» Use AsyncTasks & a ThreadPoolExecutor to compute the greatest common
divisor (GCD) of two numbers, which is the largest positive integer that
divides two integers without a remainder

starting new AsyncTask #1
tarting new AsyncTask #2

Starting new AsyncTask #3

in run() with thread id Thread[AsyncTask #1,5main] the GCD

of 1002590626 and -11530583 is -1

Iin run() with thread id Thread[AsyncTask #3,5main] the GCD
N @ 8:33 of 1942659237 and 1098392555 is 1

in run() with thread id Thread[AsyncTask #2,5main] the GCD
of -825952393 and 1519916585 is 1
in run() with thread id Thread[AsyncTask #3,5main] the GCD
of -1873262416 and 367737629 is 1
in run() with thread id Thread[AsyncTask #2,5,main] the GCD
of 2019154437 and 1387735215 1
in run() with thread id Thread[AsyncTask #1,5main] the GCD
of -922711953 and -2054476175is-19
in run() with thread id Thread[AsyncTask #2,5main] the GCD
of 118793795 and -1874535828 is 1
in run() with thread id Thread[AsyncTask #3,5main] the GCD
of 320447007 and 535867874 is 1
in run() with thread id Thread[AsyncTask #1,5main] the GCD
of -2134913728 and 2063654381 is -1

Please touch the floating action button to set
the count

in run() with thread id Thread[AsyncTask #2,5main] the GCD
of 1112721487 and 1280169668 is 1

100000000:3

100000000:3

Runtime Behavior of the AsyncTaskInterrupted App

» Use AsyncTasks & a ThreadPoolExecutor to compute the greatest common
divisor (GCD) of two numbers, which is the largest positive integer that
divides two integers without a remainder

N "yl 8:33

Please touch the floating action button to set
the count

100000000:3

starting new AsyncTask #1

tarting new AsyncTask #2
Starting new AsyncTask #3
in run() with thread id Thread[AsyncTask #1,5main] the GCD
of 1002590626 and -11530583 is -1
Iin run() with thread id Thread[AsyncTask #3,5main] the GCD
of 1942659237 and 1098392555 s 1
in run() with thread id Thread[AsyncTask #2,5main] the GCD
of -825952393 and 1519916585 is 1
in run() with thread id Thread[AsyncTask #3,5main] the GCD
of -1873262416 and 367737629 is 1
in run() with thread id Thread[AsyncTask #2,5,main] the GCD
of 2019154437 and 1387735215 1
in run() with thread id Thread[AsyncTask #1,5main] the GCD
of -922711953 and -2054476175is-19
in run() with thread id Thread[AsyncTask #2,5main] the GCD
of 118793795 and -1874535828 is 1
in run() with thread id Thread[AsyncTask #3,5main] the GCD
of 320447007 and 535867874 is 1
in run() with thread id Thread[AsyncTask #1,5main] the GCD
of -2134913728 and 2063654381 is -1

in run() with thread id Thread[AsyncTask #2,5main] the GCD
of 1112721487 and 1280169668 is 1

100000000:3

of 563831462 and 495738799 is 1

In run() with thread id Thread[AsyncTask #3,5main] the GCD
of -2135772995 and 398804169 is 1

In run () with thread id Thread[AsyncTask #1,5,main] the GCD
lof 515282348 and -975949918 is -2

In run() with thread id Thread[AsyncTask #2.5main] the GCD
lof 1614575061 and -197133826is 1

In run() with thread id Thread[AsyncTask #3,5,main] the GCD
lof 1782420469 and 897974308 is 1

In run() with thread id Thread[AsyncTask #1,5,main| the GCD
of 229063925 and 1530765367 is 1

In run() with thread id Thread[AsyncTask #2,5main] the GCD
lof -705879961 and -2033524255 is -1

‘In run() with thread id Thread[AsyncTask #3,5,main] the GCD
of -160463438 and -2061336140 is -2

In run() with thread id Thread[AsyncTask #1.5.main] the GCD
of 831437666 and -801438944 is -2

In run() with thread id Thread[AsyncTask #2,5,main] the GCD
of -461884834 and 1869064023 is -1

In run() with thread id Thread(AsyncTask #3,5main] the GCD
of -1390815758 and -1466312329 is -1

In run() with thread id Thread[AsyncTask #1,5,main] the GCD
of 1749213427 and 1907746809 is 1

In run() with thread id Thread[AsyncTask #3,5,main] the GCD
of 1548604599 and -1423239314 i5 -1

Finishing AsyncTask #1 after being cancelled

Finishing AsyncTask #3 after being cancelled

Finishing AsyncTask #2 after being cancelled

100000000:3

Interrupting all 3 async tasks

The user can cancel AsyncTask computations at any time

Runtime Behavior of the AsyncTaskInterrupted App

» Use AsyncTasks & a ThreadPoolExecutor to compute the greatest common
divisor (GCD) of two numbers, which is the largest positive integer that
divides two integers without a remainder

starting new AsyncTask #1
tarting new AsyncTask #2
Starting new AsyncTask #3
In run{) with thread id Thread[AsyncTask #1,5,main] the GCD
of 1002590626 and 11530583 is -1
In run() with thread id Thread[AsyncTask #3,5,main] the GCD
of 1942659237 and 1098392555 is 1
in run() with thread id Thread[AsyncTask #2,5,main] the GCD
of -825952393 and 1519916585 is 1
In run{) with thread id Thread[AsyncTask #3,5main] the GCD
of -1873262416 and 367737629 is 1
In run() with thread id Thread[AsyncTask #2,5,main] the GCD
o 2019154437 and 138773521 is 1
In run() with thread id Thread[AsyncTask #1,5,main] the GCD
of 922711953 and -2054476175is-19
llin run() with thread id Thread[AsyncTask #2,5main] the GCD
of 118793795 and -1874535828 is 1
- llin run() with thread id Thread[AsyncTask #3,5,main] the GCD
A § 611 of 320447007 and 535867874 is 1
In run() with thread id Thread[AsyncTask #1,5main] the GCD of -1237416247 and 567133594 is 1 in run() with thread id Thread[AsyncTask #1,5,main] the GCD
In run() with thread id Thread[AsyncTask #2,5main] the GCD of 920114365 and -1119481648 is 1 of -2134913728 and 2063654381 is -1
Finishing AsyncTask #3 successfully Iin run() with thread id Thread[AsyncTask #2,5,main] the GCD
In run() with thread id Thread[AsyncTask #2,5main] the GCD of 1435331895 and -106102873 is 1 of 1112721487 and 1280169668 is 1
In run() with thread id Thread[AsyncTask #1,5main] the GCD of -2146063272 and 1357821030 is 6
In run() with thread id Thread[AsyncTask #2,5main] the GCD of -2066449452 and 358061010 is -6
In run() with thread id Thread[AsyncTask #1,5main] the GCD of 793710732 and 1717282566 is 6
(
(
(

In run() with thread id Thread[AsyncTask #2,5main] the GCD of 2066665622 and 644570449 is 1
In run() with thread id Thread[AsyncTask #1,5main] the GCD of -1040809117 and -369349254 is -1
In run() with thread id Thread[AsyncTask #2,5main] the GCD of -547472516 and 239987748 is 4
In run() with thread id Thread[AsyncTask #1,5main] the GCD of 1851249887 and -688400446 is -1
Finishing AsyncTask #2 successfully

In run() with thread id Thread[AsyncTask #1,5main] the GCD of -1560357634 and -1682557474 is -2
Finishing AsyncTask #1 successfully

100000000:3

The device’s runtime configuration can also change
at any time without affecting running computations

Implementation of the
AsyncTaskInterrupted App

Implementation of the AsyncTaskInterrupted App

» This app showcases the black-box & white-box e
frameworks in Android’s AsyncTask class LitecyclelLoggingActivity

& LifecycleLoggingActivity()
< onCreate(Bundle)-void

< onStart():void

< onResume()void

< onPause()void
=<lava Class=> + onStop{)-waid

© GCDAsyncTask < onRestart()-void
& GCDAsyncTask(MainActivity,int, Random) < onDestroy()-void
a setActivity(MainActivity):void < onSavelnstanceState(Bundle)void
@ computeGCD(int,int)Cint < onRestorelnstanceState(Bundle)-void
< onPreExecute()void
@ dolnBackground(Integer[]):Void ﬁf
< onPostExecute(Void):void
< onCancelled(Void):-void << Java Class==>

/M (® MainActivity

~mTaskList [0.*
mTaskLis vity | & MainActivity()

01 onCreate(Bundle):void

@ initializeViews():void

@ setCount(View):void

@ startOrStopComputations(View)void

@ startComputations(int)-void
<<Java Class>> . . .
= syncTaskF{elatedM = interruptComputations():void

(® Async TaskRelated State — o done()void

a AsyncTaskRelatedState() @ printin(String)-void
@ onRetainMonConfigurationinstance():Object
< onDestroy()-void

See github.com/douglascraigschmidt/POSA/tree/master/ex/M5/GCD/AsyncTaskInterrupted

https://github.com/douglascraigschmidt/POSA/tree/master/ex/M5/GCD/AsyncTaskInterrupted

Implementation of the AsyncTaskInterrupted App

» This app showcases the black-box & white-box <<Java Class>>
& LifecycleLoggingActivity

frameworks in Android’s AsyncTask class

& LifecycleLoggingActivity()
< onCreate(Bundle)-void

< onStart():void

< onResume()void

< onPause()void

< onStop()-void

<< Java Class=>

© GCDAsyncTask < onRestart()-void
& GCDAsyncTask(MainActivity,int, Random) < onDestroy()-void
a setActivity(MainActivity):void < onSavelnstanceState(Bundle)void
@ computeGCD(int,int)Cint < onRestorelnstanceState(Bundle)void

< onPreExecute()void

@ dolnBackground(Integer[]):Void
< onPostExecute(Void):void

< onCancelled(Void):-void << Java Class==>

M (® MainActivity

mTaskList | 0. vity | & MainActivity()
01 onCreate(Bundle):void
@ initializeViews():void
@ setCount(View):void
@ startOrStopComputations(View)void

@ startComputations(int)-void
<<Java Class>> . . .
= syncTaskF{elatedM = interruptComputations():void

(® Async TaskRelated State — o done()void

a AsyncTaskRelatedState() @ printin(String)-void
@ onRetainMonConfigurationinstance():Object
< onDestroy()-void

Super class automatically logs lifecycle hook method calls to aid debugging

Implementation of the AsyncTaskInterrupted App

» This app showcases the black-box & white-box e
frameworks in Android’s AsyncTask class LitecyclelLoggingActivity

& LifecycleLoggingActivity()
< onCreate(Bundle)-void

< onStart():void

< onResume()void

< onPause()void

< onStop()-void

<< Java Class=>

© GCDAsyncTask < onRestart()-void
& GCDAsyncTask(MainActivity,int, Random) < onDestroy()-void
a setActivity(MainActivity):void < onSavelnstanceState(Bundle)void
@ computeGCD(int,int)Cint < onRestorelnstanceState(Bundle)-void
< onPreExecute()void M

@ dolnBackground(Integer[]):Void
< onPostExecute(Void):void
< onCancelled(Void):-void << Java Class==>
/ \El (® MainActivity
~mTaskList |0.*
miaskHs | FMainActivity()

< onCreate(Bundle):void
@ initializeViews():void
@ setCount(View):void

@ startOrStopComputations(View)void

~=Java Clasens d @ statComputations(int)-void
® AsyncTaskRelatedState Async laskRelatedState ® interruptComputations()-void
y R'L[] 1 @ done()void
a AsyncTaskRelatedState() - @ printin(String)-void

@ onRetainMonConfigurationinstance():Object
< onDestroy()-void

Start & cancels AsyncTasks that repeatedly compute GCD of two random #'s

Implementation of the AsyncTaskInterrupted App

» This app showcases the black-box & white-box e
frameworks in Android’s AsyncTask class LitecyclelLoggingActivity

& LifecycleLoggingActivity()
< onCreate(Bundle)-void

< onStart():void

< onResume()void

< onPause()void
=<lava Class=> + onStop{)-waid

© GCDAsyncTask < onRestart()-void
& GCDAsyncTask(MainActivity,int, Random) < onDestroyl()-void
a setActivity(MainActivity):void < onSavelnstanceState(Bundle)void
@ computeGCD(int,int)Cint < onRestorelnstanceState(Bundle)-void
< onPreExecute()void
@ dolnBackground(Integer[]):Void ﬁf
< onPostExecute(Void):void
< onCancelled(Void):-void << Java Class==>

/M (® MainActivity

~mTaskList [0.*
mTaskLis vity | & MainActivity()

01 onCreate(Bundle):void

@ initializeViews():void

@ setCount(View):void

@ startOrStopComputations(View)void
@ startComputations(int)-void

<<Java Class>> . . .
® AsyncTaskRelated State j syncTaskF{elatedM ® interruptComputations()-void

@ done()void
a AsyncTaskRelatedState 0.1 @ printin(String)-void
@ onRetainMonConfigurationinstance():Object

< onDestroy()-void

Stores state (including the AsyncTasks & ThreadPoolExecutor) that's passed
between instances of the MainActivity after runtime configuration changes

Implementation of the AsyncTaskInterrupted A

Dp

» This app showcases the black-box & white-box
frameworks in Android’s AsyncTask class

<< Java Class=>

(® GCDAsyncTask

& GCDAsyncTask(MainActivity,int, Random)
a setActivity(MainActivity):void

= computeGCD{int,int):int

< onPreExecute()void

@ dolnBackground(Integer[]):Void
< onPostExecute(Void):void

<<Java Class>>
& LifecycleLoggingActivity

& LifecycleLoggingActivity()

< onCreate(Bundle)-void

< onStart():void

< onResume()void

< onPause()void

< onStop()-void

< onRestart()-void

< onDestroy()-void

< onSavelnstanceState(Bundle)void

< onRestorelnstanceState(Bundle)-void

?

< onCancelled(Void):-void

<< lava Class=>

(® MainActivity

~mTaskList | 0%

<<Java Class>» /—mﬂ////_—@
syn cTaskF{eIatedM
=

(® Async TaskRelated State
& AsyncTaskRelatedState) 0.1

& MainActivity()

< onCreate(Bundle):void

@ initializeViews():void

@ setCount(View):void

@ startOrStopComputations(View)void
@ startComputations(int)-void

@ interruptComputations()-void

@ done()void

@ printin(String)-void

@ onRetainMonConfigurationinstance():Object

< onDestroy()-void

Extends AsyncTask & in a ThreadPoolExecutor thread repeatedly computing
the GCD of two numbers in @ manner that can be cancelled at any point

Implementation of the AsyncTaskInterrupted App

« We'll now analyze the source code for this app

public class GCDAsyncTask
extends AsyncTask<// Passed to doInBackground ()

Integer,
// Passed to onProgressUpdate ()
String,
// Returned from doInBackground()
// and passed to onPostExecute ()
Boolean> {

J**
- . ublic class MainActivit
* Debugging tag used by the Android logger. E extends LifecycleioggingActivity (

*/ | . /%%
private final Strlng TAG = * EditText field for entering the desired number of iterations.
getClass () .getSimpleName () ; */
private EditText mCountEditText;
/**
* A reference to the MainActivity. [**
*/ * Number of times to iterate if the user doesn't specify
private WeakReference<MainActivity> mActivity; */Other"ise°
*
[/ ** private final static int sDEFAULT COUNT = 100000000;
* Random number generator. e
*/ * Number of threads to put in the ThreadPoolExecutor.
private final Random mRandom; */
private final static int sMAX TASK COUNT = 2;
[**
* Keeps track of the AsyncTask number. [
*/ * Keeps track of whether the edit text is wvisible for the
private int mAsyncTaskNumber; */user to enter a count.
*
private boolean mIsEditTextVisible = false;
/**
* Reference to the "set" floating action button.
*/

private FloatingActionButton mSetFab;

See github.com/douglascraigschmidt/POSA/tree/master/ex/M5/GCD/AsyncTaskInterrupted

https://github.com/douglascraigschmidt/POSA/tree/master/ex/M5/GCD/AsyncTaskInterrupted

End of the AsyncTask
Framework: Example
Application

14

