Managing the Java Thread Lifecycle:
Java Thread Interrupts vs.
Hardware/0S Interrupts

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Know various ways to stop Java threads

 Stopping a thread with an interrupt
request

« Understand differences between
a Java thread interrupt & a
hardware/OS interrupt

Interrupt Process (from three potential sources)

Hardware

Processor

Software

Interupt Request
(IR Q) sent fom
device to
prOCEsEOr

Exception / Trap
sent fom
processor to
PrOCEEs0T

l

Software Interrupt
instruction loaded
by processor

|

Processor halts
thread execution

h 4

Processor saves
thread state

h 4

Processor
executes interrupt
handler

h 4

Processor
resumes thread
execution

Java Thread Interrupts vs.
Hardware/OS Interrupts

Java Thread Interrupts vs Hardware/OS Interrupts

 Interrupts at the hardware or OS
layers have several properties

Interrupt Process (from three potential sources)

Hardware

Processor

Software

Intemupt Reguest

Exception / Trap

Software Interrupt

ﬂﬂg} S;f-*nttfmm = f"”"t instruction loaded
evice to feddmesl by processor
PO CESE0r processor
h J

FProcessor halts
thread execution

!

Processor saves
thread state

v

Processor
exgcutes interrupt
handler

!

Processor
resumes thread
execution

See en.wikipedia.org/wiki/Interrupt & en.wikipedia.org/wiki/Unix_signal

http://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Unix_signal

Java Thread Interrupts vs Hardware/OS Interrupts
 Interrupts at the hardware or OS _
Iayers have several properties Interrupt Process (from three potential sources)

« Asynchronous

« Can occur essentially anytime
. Intemupt Reguest Exception / Tra
& are independent of the Sent ntfom

(R} =ent fom sent fom Sofware Interrupt

. . . device to processorto instruction loaded
instruction currently running

by processor
proCessor proCesS0r

l |

Y

Hardware Processor Software

FProcessor halts
thread execution

!

Processor saves
thread state

v

Processor
exgcutes interrupt
handler

!

Processor
resumes thread
execution

See vujungle.blogspot.com/2010/12/differentiate-synchronous-and.html

http://vujungle.blogspot.com/2010/12/differentiate-synchronous-and.html

Java Thread Interrupts vs Hardware/OS Interrupts
 Interrupts at the hardware or OS _
Iayers have several properties Interrupt Process (from three potential sources)

« Asynchronous

Hardware Processor

Software
et I et W s
b e e
- A program needn't test for | |
. : l
them explicitly since they —
OCCUr “Out'Of-ba nd" thread exscution

!

Processor saves
thread state

v

Processor
executes interrupt
handler

!

Processor
resumes thread
execution

Java Thread Interrupts vs Hardware/OS Interrupts
 Interrupts at the hardware or OS _
Iayers have several properties Interrupt Process (from three potential sources)

Hardware Processor Software

* Preemptive

Int;rtrlupt Hieqfruuest E:-c|::E.l[:-titl:lfrll_nsl Trap S oitware Intermupk
» Pause (& then later resume) the i o instution loaded

. . T i by processor
execution of currently running) [-]
code without its cooperation

Y

FProcessor halts
thread execution

!

Processor saves
thread state

v

Processor
exgcutes interrupt
handler

!

Processor
resumes thread
execution

See en.wikipedia.org/wiki/Preemption (computing)

https://en.wikipedia.org/wiki/Preemption_(computing)

Java Thread Interrupts vs Hardware/OS Interrupts

 This example shows how to
catch the UNIX SIGINT signal

void sig handler(int signo) {
if (signo == SIGINT)
printf ("received SIGINT\n") ;
}

int main(void) {
if (signal (SIGINT, sig handler)
== SIG_ERR)
printf("can't catch SIGINT\n");

for (;;)
sleep (10) ;

return 0;

}

See www.thegeekstuff.com/2012/03/catch-signals-sample-c-code

http://www.thegeekstuff.com/2012/03/catch-signals-sample-c-code

Java Thread Interrupts vs Hardware/OS Interrupts

 This example shows how to void sig_handler(int signo) {
catch the UNIX SIGINT signal if (signo == SIGINT)

printf ("received SIGINT\n");
« It occurs asynchronously }

int main(void) {
if (signal (SIGINT, sig handler)
== SIG_ERR)
printf("can't catch SIGINT\n");

for (;;)
sleep (10) ;
The SIGINT interrupt is
typically generated by return 0;
typing ~C in a UNIX shell }

Java Thread Interrupts vs Hardware/OS Interrupts

 This example shows how to
catch the UNIX SIGINT signal

« It preempts the current
instruction

void sig handler (int signo) ({
if (signo == SIGINT)
printf ("received SIGINT\n") ;
}

int main(void) {
if (signal (SIGINT, sig handler)
== SIG_ERR)
printf("can't catch SIGINT\n");

for (;;)
sleep (10) ;

return 0;

}

10

Java Thread Interrupts vs Hardware/OS Interrupts

 This example shows how to
catch the UNIX SIGINT signal

« It needn’t be tested
for explicitly

void sig handler(int signo) {
if (signo == SIGINT)
printf ("received SIGINT\n") ;
}

int main(void) {
if (signal (SIGINT, sig handler)
== SIG_ERR)
printf("can't catch SIGINT\n");

for (;;)
sleep (10) ;

return 0;

}

11

Java Thread Interrupts vs Hardware/OS Interrupts

« Asynchronous & preemptive
interrupt handling make it hard
to reason about programs

See en.wikipedia.org/wiki/Unix_signal#Risks

https://en.wikipedia.org/wiki/Unix_signal#Risks

Java Thread Interrupts vs Hardware/OS Interrupts

» Asynchronous & preemptive
interrupt handling make it hard
to reason about programs, e.g.

* Race conditions

Race conditions occur when a program
depends on the sequence or timing
of threads for it to operate properly

Thread,

=

Shared State

See en.wikipedia.org/wiki/Race condition#Software

https://en.wikipedia.org/wiki/Race_condition#Software

Java Thread Interrupts vs Hardware/OS Interrupts

» Asynchronous & preemptive
interrupt handling make it hard
to reason about programs, e.g.

« Re-entrancy problems

A non-reentrant function cannot be R E' E N T RY
/

interrupted in the middle of its execution
& then safely called again before its
previous invocations complete execution

See en.wikipedia.org/wiki/Reentrancy (computing)

https://en.wikipedia.org/wiki/Reentrancy_(computing)

Java Thread Interrupts vs Hardware/OS Interrupts

« Asynchronous & preemptive
interrupt handling make it hard
to reason about programs, e.g.

« Non-transparent restarts F \ ; ’Z

e.g., an 1/O operation returns the # of bytes transferred & it is
up to the application to check this & manage its own resumption
of the operation until all the bytes have been transferred

See en.wikipedia.org/wiki/PCLSRing#Unix-solution: restart on request

https://en.wikipedia.org/wiki/PCLSRing#Unix-solution:_restart_on_request

Java Thread Interrupts vs Hardware/OS Interrupts

 Java thread interrupts differ

from hardware or Operating Interrupt Process (from three potential sources)
system interrupts Har Do ware
roNen | | [“nim | | fsotueren
pr:ggssu Drpﬂrﬂrﬂ by processor
|
F rhalts
threa tion

Processor saves
thread state

¥

Processor
executes interrupt
handler

resumes thread
execution

See docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.htmil

https://docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html

Java Thread Interrupts vs Hardware/OS Interrupts

 Java thread interrupts differ

from hardware or Operating Interrupt Process (from three potential sources)
system interrupts, e.g. o - i
 Delivery is synchronous &
/70n'pfeemptive /ather th?n [Itgﬂ} . equ?nst Exlﬂ};[[n;;n:rap ﬁns?ntﬂdriihnlt:a
asynchronous & preemptive e o by processor
- i.e., they don't occur at an ‘
arbitrary point & don’t pause ,
(& later resume) running code treo o
Processor saves
thread state
B
Processor
executes interrupt
handler
resumes thread
execution

17

Java Thread Interrupts vs Hardware/OS Interrupts

« Java thread interrupts differ void processNonBlocking ()
from hardware or operating {
system interrupts, e.q.

while (true) {
. // Do some long-running
// computation
if (Thread.interrupted())

- A program must test for throw new _
them explicitly InterruptedException() ;

18

Java Thread Interrupts vs Hardware/OS Interrupts

« Java thread interrupts differ void processNonBlocking ()
from hardware or operating {
system interrupts, e.q.

while (true) {
. // Do some long-running
// computation
if (Thread.interrupted())

- A program must test for throw new _
them explicitly InterruptedException() ;

* i.e., InterruptedException is
(usually) thrown synchronously
& is handled synchronously

19

Java Thread Interrupts vs Hardware/OS Interrupts

 Java thread interrupts differ
from hardware or operating
system interrupts, e.g.

static class SleeperThread
extends Thread {
public void run() {

int c;

try {
= System.in.read() ;

C

}

 Certain operations cannot
be interrupted

* e.g., blocking I/O calls that
aren’t “interruptable channels”

Please

See bugs.java.com/bugdatabase/view

bug.do?bug id=4514257

http://bugs.java.com/bugdatabase/view_bug.do?bug_id=4514257

End of Managing the Java
Thread Lifecycle: Java
Thread Interrupts vs.

Hardware/OS Interrupts

21

