Managing the Java Thread Lifecycle:
stopping a Thread via an Interrupt

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Know various ways to stop Java threads

« Stopping a thread with an interrupt
request

Please

Stopping Java Threads
with an Interrupt Request

Stopping Java Threads with an Interrupt Request

A thread can be stopped voluntarily
by calling its interrupt() method

Please

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#interrupt

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#interrupt--

Stopping Java Threads with an Interrupt Request

« A thread can be stopped voluntarily Interrupts
by calling its interrupt() method

e Posts an /nterrupt requestto An interrupt is an indication to a thread

a thread that it should stop what it is doing and
do something else. It's up to the
programmer to decide exactly how a
thread responds to an interrupt, but it
is very common for the thread to
terminate. This is the usage

emphasized in this lesson.

A thread sends an interrupt by
invoking interrupt onthe Thread
object for the thread to be interrupted.
For the interrupt mechanism to work
correctly, the interrupted thread must
support its own interruption.

See docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html

Stopping Java Threads with an Interrupt Request

A thread can be stopped voluntarily
by calling its interrupt() method

 Interrupts are is implemented via
an internal /nterrupt status flag

Interrupts

An interrupt is an indication to a thread
that it should stop what it is doing and
do something else. It's up to the
programmer to decide exactly how a
thread responds to an interrupt, but it
is very common for the thread to
terminate. This is the usage
emphasized in this lesson.

A thread sends an interrupt by
invoking interrupt onthe Thread
object for the thread to be interrupted.
For the interrupt mechanism to work
correctly, the interrupted thread must
support its own interruption.

Stopping Java Threads with an Interrupt Request

A thread can be stopped voluntarily
by calling its interrupt() method

 Interrupts are is implemented via
an internal /nterrupt status flag

 Invoking Thread.interrupt() sets
this flag

Interrupts

An interrupt is an indication to a thread
that it should stop what it is doing and
do something else. It's up to the
programmer to decide exactly how a
thread responds to an interrupt, but it
is very common for the thread to
terminate. This is the usage
emphasized in this lesson.

A thread sends an interrupt by
invoking interrupt onthe Thread
object for the thread to be interrupted.
For the interrupt mechanism to work
correctly, the interrupted thread must
support its own interruption.

Stopping Java Threads with an Interrupt Request

« A thregd can _be stopped voluntarily e interrupted() — Tests

by calling its interrupt() method boolean |whether the current thread
has been interrupted
boolean |isInterrupted() — Tests

 Interrupts are is implemented via whether this thread has
an internal /nterrupt status flag been interrupted

* Programs can check this flag via
two thread accessor methods

Each method has different side-effects on interrupt status, as discussed shortly

https://docs.oracle.com/javase/7/docs/api/java/lang/Thread.htmlinterrupted()
https://docs.oracle.com/javase/7/docs/api/java/lang/Thread.htmlisInterrupted()

Stopping Java Threads with an Interrupt Request

» Here's a simple Java program
that starts, runs, & interrupts
a background thread

static int main(String args[]) {

Thread tl1 =
new Thread(() -> {
for (int 1 = 0;

i < args.length; i++) {
processBlocking (args[i]) ;
processNonBlocking (args[i]) ;

}
}) g

tl.start () ;
. // Run concurrently for a while
tl.interrupt() ;

Stopping Java Threads with an Interrupt Request

» Here's a simple Java program
that starts, runs, & interrupts
a background thread

Create a new thread

static int main(String args[]) {

Thread tl =
new Thread(() -> {
for (int 1 = 0;

i < args.length; i++) {
processBlocking (args[i]) ;
processNonBlocking (args[i]) ;

}
}) g

tl.start () ;
. // Run concurrently for a while
tl.interrupt() ;

10

Stopping Java Threads with an Interrupt Request

« Here's a simple Java program static int main(String args[]) {
that starts, runs, & interrupts Thread tl =

a background thread new Thread(() -> {
for (int 1 = 0;

i < args.length; i++) {
Start the new thread processBlocking (args[i]) ;
processNonBlocking (args[i]) ;
}
}) s

tl.start () ;
. // Run concurrently for a while
tl.interrupt() ;

11

Stopping Java Threads with an Interrupt Request

« Here's a simple Java program static int main(String args[]) {
that starts, runs, & interrupts Thread tl =

a background thread new Thread(() -> {
for (int 1 = 0;

i < args.length; i++) {
processBlocking (args[i]) ;
processNonBlocking (args[i]) ;

}
});

tl.start () ;
. // Run concurrently for a while
tl.interrupt() ;

The main thread continues running

12

Stopping Java Threads with an Interrupt Request

« Here's a simple Java program static int main(String args[]) {

that starts, runs, & interrupts Thread tl =
a background thread new Thread(() -> {
for (int 1 = O;

i < args.length; i++) {

) Blocki i) ;
After the thread starts, it runs processBlocking (args il ;
this lambda expression, whose } '

methods perform blocking & by ;
non-blocking computations '

tl.start () ;
. // Run concurrently for a while
tl.interrupt() ;

13

Stopping Java Threads with an Interrupt Request

« Here's a simple Java program static int main(String args[]) {
that starts, runs, & interrupts Thread tl =

a background thread new Thread(() -> {
for (int 1 = 0;

i < args.length; i++) {
processBlocking (args[i]) ;
processNonBlocking (args[i]) ;

}
});

tl.start () ;
. // Run concurrently for a while
tl.interrupt();

After the main thread performs some
computations it interrupts thread t1

Stopping Java Threads with an Interrupt Request

« Here's a simple Java program static int main(String args[]) {
that starts, runs, & interrupts Thread tl =

a background thread new Thread(() -> {
for (int 1 = 0;

i < args.length; i++) {
processBlocking (args([i]) ;
Method’s running in thread t1 / processNonBlocking (args[i]) ;
check periodically to see If the }

thread'’s been stopped yet }) g

tl.start () ;
. // Run concurrently for a while
tl.interrupt() ;

15

Stopping Java Threads with an Interrupt Request

 Certain blocking operations void processBlocking (String args) {
in the Java language & class

libraries return automatically while (true) ({
& throw InterruptedException tth{ 3 _
if the thread is interrupted Thread.currentThread() .

sleep (interval) ;
synchronized (this) ({
while (someConditionFalse)
wait() ;
}
}
catch (InterruptedException e)

{ ... 1}

e.g., wait(), join(), sleep() & blocking 1I/0 calls on "interruptable channels”

See praveer09.github.io/technology/2015/12/06/understanding-thread-interruption-in-java

https://praveer09.github.io/technology/2015/12/06/understanding-thread-interruption-in-java

Stopping Java Threads with an Interrupt Request

Methods whose operations do void processNonBlocking(String args) ({
not block must periodically

check if Thread.interrupt() has ~ while (true) ({
been called ... // Long-running computation

if (Thread.interrupted())
throw
new | InterruptedException() ;

interrupted() is a static method that returns true if
the calling thread has its interrupt status flag set

interrupted() clears the current thread’s interrupt status the first time it's called

Stopping Java Threads with an Interrupt Request

« Methods whose operations do void processNonBlocking (String args) {
not block must periodically

check if Thread.interrupt() has ~ while (true) ({
been called ... // Long-running computation

if (Thread.interrupted())
throw
new InterruptedException() ;

/

This example explicitly throws an
InterruptedException, which is
created/treated like a normal object

See docs.oracle.com/javase/8/docs/api/java/lang/InterruptedException.html

https://docs.oracle.com/javase/8/docs/api/java/lang/InterruptedException.html

Stopping Java Threads with an Interrupt Request

« Methods whose operations do void processNonBlocking (String args) {
not block must periodically

check if Thread.interrupt() has final myThread =
been called Thread.currentThread() ;

while (true) {
. // Long-running computation
if (myThread.isInterrupted())
throw
new | InterruptedException () ;

Isinterrupted() is a non-static method that returns true
If the designated thread has its interrupt status flag set

isInterrupted() can be called multiple times w/out affecting its /nterrupt status

Stopping Java Threads with an Interrupt Request

Programs can override thread public class BeingThread
interrupt methods since they extends Thread ({
are virtual volatile boolean mInterrupted;

. e-g-/ interrupt(), interrupted(), BeingThread (Runnable runnable) {
& isInterrupted() super (runnable) ;

mInterrupted = false;

}

public void interrupt() {
mInterrupted = true;
super.interrupt() ;

}

public boolean isInterrupted() ({
return mInterrupted
| | super.isInterrupted()

See stackoverflow.com/questions/23369891/overriding-
interrupt-isinterrupted-method-in-thread-class

http://stackoverflow.com/questions/23369891/overriding-interrupt-isinterrupted-method-in-thread-class

Stopping Java Threads with an Interrupt Request

* Programs can override thread public class BeingThread
interrupt methods since they extends Thread ({
are virtual volatile boolean mInterrupted;
* e.c__:j., mterruPt()l mterruPted()l BeingThread (Runnable runnable) ({
& isInterrupted() super (runnable) ;

mInterrupted = false;

public void interrupt() {
mInterrupted = true;
super.interrupt() ;

}

public boolean isInterrupted() ({
return mInterrupted
| | super.isInterrupted()

But make sure you know what you’re doing...

End of Managing the Java
Thread Lifecycle: Stopping
a Thread via an Interrupt

22

