
Managing the Java Thread Lifecycle:

Stopping a Thread via an Interrupt

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Do

Disturb

Learning Objectives in this Part of the Lesson
• Know various ways to stop Java threads

• Stopping a thread with a volatile flag

• Stopping a thread with an interrupt
request

3

Stopping Java Threads
with an Interrupt Request

4

Stopping Java Threads with an Interrupt Request
• A thread can be stopped voluntarily

by calling its interrupt() method

Do

Disturb

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#interrupt

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#interrupt--

5

• A thread can be stopped voluntarily
by calling its interrupt() method

• Posts an interrupt request to
a thread

Stopping Java Threads with an Interrupt Request

See docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html

6

• A thread can be stopped voluntarily
by calling its interrupt() method

• Posts an interrupt request to
a thread

• Interrupts are is implemented via
an internal interrupt status flag

Stopping Java Threads with an Interrupt Request

7

• A thread can be stopped voluntarily
by calling its interrupt() method

• Posts an interrupt request to
a thread

• Interrupts are is implemented via
an internal interrupt status flag

• Invoking Thread.interrupt() sets
this flag

Stopping Java Threads with an Interrupt Request

8

• A thread can be stopped voluntarily
by calling its interrupt() method

• Posts an interrupt request to
a thread

• Interrupts are is implemented via
an internal interrupt status flag

• Invoking Thread.interrupt() sets
this flag

• Programs can check this flag via
two thread accessor methods

Stopping Java Threads with an Interrupt Request

Each method has different side-effects on interrupt status, as discussed shortly

static
boolean

interrupted() – Tests
whether the current thread
has been interrupted

boolean isInterrupted() – Tests
whether this thread has
been interrupted

https://docs.oracle.com/javase/7/docs/api/java/lang/Thread.htmlinterrupted()
https://docs.oracle.com/javase/7/docs/api/java/lang/Thread.htmlisInterrupted()

9

• Here’s a simple Java program
that starts, runs, & interrupts
a background thread

static int main(String args[]) {

Thread t1 =

new Thread(() -> {

for (int i = 0;

i < args.length; i++) {

processBlocking(args[i]);

processNonBlocking(args[i]);

}

});

t1.start();

... // Run concurrently for a while

t1.interrupt();

...

Stopping Java Threads with an Interrupt Request

10

• Here’s a simple Java program
that starts, runs, & interrupts
a background thread

static int main(String args[]) {

Thread t1 =

new Thread(() -> {

for (int i = 0;

i < args.length; i++) {

processBlocking(args[i]);

processNonBlocking(args[i]);

}

});

t1.start();

... // Run concurrently for a while

t1.interrupt();

...

Stopping Java Threads with an Interrupt Request

Create a new thread

11

• Here’s a simple Java program
that starts, runs, & interrupts
a background thread

static int main(String args[]) {

Thread t1 =

new Thread(() -> {

for (int i = 0;

i < args.length; i++) {

processBlocking(args[i]);

processNonBlocking(args[i]);

}

});

t1.start();

... // Run concurrently for a while

t1.interrupt();

...

Stopping Java Threads with an Interrupt Request

Start the new thread

12

• Here’s a simple Java program
that starts, runs, & interrupts
a background thread

static int main(String args[]) {

Thread t1 =

new Thread(() -> {

for (int i = 0;

i < args.length; i++) {

processBlocking(args[i]);

processNonBlocking(args[i]);

}

});

t1.start();

... // Run concurrently for a while

t1.interrupt();

...

Stopping Java Threads with an Interrupt Request

The main thread continues running

13

• Here’s a simple Java program
that starts, runs, & interrupts
a background thread

static int main(String args[]) {

Thread t1 =

new Thread(() -> {

for (int i = 0;

i < args.length; i++) {

processBlocking(args[i]);

processNonBlocking(args[i]);

}

});

t1.start();

... // Run concurrently for a while

t1.interrupt();

...

Stopping Java Threads with an Interrupt Request

After the thread starts, it runs
this lambda expression, whose
methods perform blocking &
non-blocking computations

14

• Here’s a simple Java program
that starts, runs, & interrupts
a background thread

static int main(String args[]) {

Thread t1 =

new Thread(() -> {

for (int i = 0;

i < args.length; i++) {

processBlocking(args[i]);

processNonBlocking(args[i]);

}

});

t1.start();

... // Run concurrently for a while

t1.interrupt();

...

Stopping Java Threads with an Interrupt Request

After the main thread performs some
computations it interrupts thread t1

15

• Here’s a simple Java program
that starts, runs, & interrupts
a background thread

static int main(String args[]) {

Thread t1 =

new Thread(() -> {

for (int i = 0;

i < args.length; i++) {

processBlocking(args[i]);

processNonBlocking(args[i]);

}

});

t1.start();

... // Run concurrently for a while

t1.interrupt();

...

Stopping Java Threads with an Interrupt Request

Methods running in thread t1
check periodically to see if the

thread’s been stopped yet

16

void processBlocking(String args) {

...

while (true) {

try {

Thread.currentThread().

sleep(interval);

synchronized(this) {

while (someConditionFalse)

wait();

}

}

catch (InterruptedException e)

{ ... }

...

}

}

See praveer09.github.io/technology/2015/12/06/understanding-thread-interruption-in-java

• Certain blocking operations
in the Java language & class
libraries return automatically
& throw InterruptedException
if the thread is interrupted

Stopping Java Threads with an Interrupt Request

e.g., wait(), join(), sleep() & blocking I/O calls on “interruptable channels”

https://praveer09.github.io/technology/2015/12/06/understanding-thread-interruption-in-java

17

• Methods whose operations do
not block must periodically
check if Thread.interrupt() has
been called

void processNonBlocking(String args) {

...

while (true) {

... // Long-running computation

if (Thread.interrupted())

throw

new InterruptedException();

...

Stopping Java Threads with an Interrupt Request

interrupted() is a static method that returns true if
the calling thread has its interrupt status flag set

interrupted() clears the current thread’s interrupt status the first time it’s called

18

• Methods whose operations do
not block must periodically
check if Thread.interrupt() has
been called

Stopping Java Threads with an Interrupt Request

This example explicitly throws an
InterruptedException, which is

created/treated like a normal object

void processNonBlocking(String args) {

...

while (true) {

... // Long-running computation

if (Thread.interrupted())

throw

new InterruptedException();

...

See docs.oracle.com/javase/8/docs/api/java/lang/InterruptedException.html

https://docs.oracle.com/javase/8/docs/api/java/lang/InterruptedException.html

19isInterrupted() can be called multiple times w/out affecting its interrupt status

• Methods whose operations do
not block must periodically
check if Thread.interrupt() has
been called

Stopping Java Threads with an Interrupt Request

isInterrupted() is a non-static method that returns true
if the designated thread has its interrupt status flag set

void processNonBlocking(String args) {

...

final myThread =

Thread.currentThread();

while (true) {

... // Long-running computation

if (myThread.isInterrupted())

throw

new InterruptedException();

...

20

Stopping Java Threads with an Interrupt Request

See stackoverflow.com/questions/23369891/overriding-
interrupt-isinterrupted-method-in-thread-class

public class BeingThread

extends Thread {

volatile boolean mInterrupted;

BeingThread(Runnable runnable) {

super(runnable);

mInterrupted = false;

}

public void interrupt() {

mInterrupted = true;

super.interrupt();

}

public boolean isInterrupted() {

return mInterrupted

|| super.isInterrupted()

}

}

• Programs can override thread
interrupt methods since they
are virtual

• e.g., interrupt(), interrupted(),
& isInterrupted()

http://stackoverflow.com/questions/23369891/overriding-interrupt-isinterrupted-method-in-thread-class

21

• Programs can override thread
interrupt methods since they
are virtual

• e.g., interrupt(), interrupted(),
& isInterrupted()

Stopping Java Threads with an Interrupt Request

But make sure you know what you’re doing…

public class BeingThread

extends Thread {

volatile boolean mInterrupted;

BeingThread(Runnable runnable) {

super(runnable);

mInterrupted = false;

}

public void interrupt() {

mInterrupted = true;

super.interrupt();

}

public boolean isInterrupted() {

return mInterrupted

|| super.isInterrupted()

}

}

22

End of Managing the Java
Thread Lifecycle: Stopping
a Thread via an Interrupt

