
Managing the Java Thread Lifecycle: 

Overview of Stopping a Java Thread

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 

Integrated Systems 

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Know various ways to stop Java threads



3

Overview of Stopping 
a Java Thread



4

Overview of Stopping a Java Thread
• It may be necessary to stop a Java 

thread for various reasons



5

Overview of Stopping a Java Thread
• It may be necessary to stop a Java 

thread for various reasons, e.g.

• Users may want to cancel a long-running 
operation

• e.g., they get bored or tired of waiting 
for it to complete



6

Overview of Stopping a Java Thread
• It may be necessary to stop a Java 

thread for various reasons, e.g.

• Users may want to cancel a long-running 
operation

• An activity is destroyed, stopped, or
paused

• e.g., due to runtime configuration 
changes or pressing the “back” button

See github.com/douglascraigschmidt/POSA/tree/master/ex/M3/GCD/Concurrent

The GCD Concurrent app contains an 
(intentional) design flaw where it “leaks” 

threads when an orientation change occurs

https://github.com/douglascraigschmidt/POSA/tree/master/ex/M3/GCD/Concurrent


7

Overview of Stopping a Java Thread
• It may be necessary to stop a Java 

thread for various reasons, e.g.

• Users may want to cancel a long-running 
operation

• An activity is destroyed, stopped, or
paused

• Cancel other “speculative computations” 
results are found

• e.g., The ExecutorService invokeAny()
method cancels other threads after 
a result is found

1.invokeAny()

ThreadPoolExecutor

WorkerThreads

Thread
(main thread)

callable

callable

callable

callable

WorkQueue

execute() run()

3.take()

4.call()

2.offer()

Collection

callable

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html#invokeAny

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html#invokeAny-java.util.Collection-


8

Overview of Stopping a Java Thread
• Stopping Java threads is surprisingly hard



9

Overview of Stopping a Java Thread
• Stopping Java threads is surprisingly hard

• i.e., the “Sorcerer’s Apprentice” problem

See www.youtube.com/watch?v=5rzyuY8-Ao8

http://www.youtube.com/watch?v=5rzyuY8-Ao8


10

Overview of Stopping a Java Thread
• There’s no safe way to stop a Java thread involuntarily

See docs.oracle.com/javase/8/docs/technotes/guides/
concurrency/threadPrimitiveDeprecation.html

https://docs.oracle.com/javase/8/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html


11

Overview of Stopping a Java Thread
• There’s no safe way to stop a Java thread involuntarily

• The stop() method is deprecated 
since it’s inherently unsafe

See geekexplains.blogspot.com/2008/07/why-
stop-suspend-resume-of-thread-are.html

http://geekexplains.blogspot.com/2008/07/why-stop-suspend-resume-of-thread-are.html


12

Overview of Stopping a Java Thread
• There’s no safe way to stop a Java thread involuntarily

• The stop() method is deprecated 
since it’s inherently unsafe, e.g.

• All locked monitors are unlocked as
the exception propagates up the stack

method1() 

method2() throws

IOException {…}

method3() throws

IOException {…}

method4() throw

IOException {…}

calls

calls

calls

Call Stack



13

Overview of Stopping a Java Thread
• There’s no safe way to stop a Java thread involuntarily

• The stop() method is deprecated 
since it’s inherently unsafe, e.g.

• All locked monitors are unlocked as
the exception propagates up the stack

• Any objects protected by these monitors
are thus left in an inconsistent state

method1() 

method2() throws

IOException {…}

method3() throws

IOException {…}

method4() throw

IOException {…}

calls

calls

calls

Call Stack



14

Overview of Stopping a Java Thread
• There’s no safe way to stop a Java thread involuntarily

• The stop() method is deprecated 
since it’s inherently unsafe, e.g.

• All locked monitors are unlocked as
the exception propagates up the stack

• Any objects protected by these monitors
are thus left in an inconsistent state

• There is no way for an object’s methods
to control when stop() takes effect..

method1() 

method2() throws

IOException {…}

method3() throws

IOException {…}

method4() throw

IOException {…}

calls

calls

calls

Call Stack



15

Overview of Stopping a Java Thread
• Long running operations in a thread must be coded to stop voluntarily!

Process
public void run(){

while (true) { 

// Check if thread 

// should stop

}

}



16

Overview of Stopping a Java Thread
• There are two ways to stop a Java 

thread voluntarily



17

Overview of Stopping a Java Thread
• There are two ways to stop a Java 

thread voluntarily

• Use a volatile flag

public class MyRunnable

implements Runnable {

private volatile boolean

mIsStopped = false;

public void stopMe() { 

mIsStopped = true; 

} 

public void run() {

while(mIsStopped != true) { 

// a long-running operation

}

...

See en.wikipedia.org/wiki/Volatile_variable#In_Java

http://en.wikipedia.org/wiki/Volatile_variable#In_Java


18

Overview of Stopping a Java Thread
• There are two ways to stop a Java 

thread voluntarily

• Use a volatile flag

• Use Java thread interrupt requests

See docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html


19

• Stopping a Java thread voluntarily requires cooperation between threads

Overview of Stopping a Java Thread



20

• Stopping a Java thread voluntarily requires cooperation between threads

• A thread must check periodically
to see if it has been told to stop

Overview of Stopping a Java Thread



21

• Stopping a Java thread voluntarily requires cooperation between threads

• A thread must check periodically
to see if it has been told to stop

• Thread interrupts are fragile since
they require all parts of a program
follow consistent usage patterns

See weblogs.java.net/blog/2009/03/02/cancelling-tasks-threadinterrupt-fragility

Overview of Stopping a Java Thread

https://weblogs.java.net/blog/2009/03/02/cancelling-tasks-threadinterrupt-fragility


22

• Stopping a Java thread voluntarily requires cooperation between threads

• A thread must check periodically
to see if it has been told to stop

• Thread interrupts are fragile since
they require all parts of a program
follow consistent usage patterns

• Voluntary checking is tedious & 
error-prone, but it’s the only way 
to halt Java threads reliably

See stackoverflow.com/questions/8505707/android-best-and-safe-way-to-stop-thread

Overview of Stopping a Java Thread

http://stackoverflow.com/questions/8505707/android-best-and-safe-way-to-stop-thread


23

Managing the Java Thread 
Lifecycle: Overview of 

Stopping a Java Thread


