Managing the Java Thread Lifecycle:
Overview of Stopping a Java Thread

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Know various ways to stop Java threads

. Blocked

new MyThread() resource
obtained

attempt to access
guarded resource

New Waiting)

cond.notify(),
cond.notifyAll()

Runnable '
' Scheduler

Running

Timed
Waiting
myThread.sleep()

wait(timeout)
join(timeout)

myThread.start()

run()

4

cond.wait()

@®
/

Terminated)

w

wait-time
elapsed

run() method
returns

Overview of Stopping
a Java Thread

Overview of Stopping a Java Thread

It may be necessary to stop a Java
thread for various reasons

Overview of Stopping a Java Thread

« It may be necessary to stop a Java
thread for various reasons, e.g.

« Users may want to cancel a |ong-running Please touch the floating action button to set

the count
O e ratio n Entering run() with thread id Thread[Thread-3,5,main]
p in run{) with thread id Thread[Thread-3,5,main] the GCD of
601885024 and -1785817357 is -1
- ag = In run{) with thread id Thread[Thread-3,5,main| the GCD of
- e.g., they get bored or tired of waiting To5963560 and 1235549507 1s
i B 4 In run{) with thread id Thread[Thread-3,5,main] the GCD af
. 929864404 and 19097736400s 4
for It to Com plete In run() with thread id Thread[Thread-3,5,main| the GCD of
1462869996 and -1153163360 is -4
in run() with thread id Thread[Thread-3,5main] the GCD of
1472213528 and 1664151916 is 4
In run{) with thread id Thread[Thread-3,5,main| the GCD of
1566597343 and 392387244 is 1
In run{) with thread id Thread[Thread-3,5,main| the GCD of
586335125 and 1659071329 is 1

100000000

Overview of Stopping a Java Thread

It may be necessary to stop a Java
thread for various reasons, e.g.

« An activity is destroyed, stopped, or
paused

* e.g., due to runtime configuration
changes or pressing the “back” button

The GCD Concurrent app contains an
(intentional) design flaw where it “leaks”
threads when an orientation change occurs

See github.com/douglascraigschmidt/POSA/tree/master/ex/M3/GCD/Concurrent

https://github.com/douglascraigschmidt/POSA/tree/master/ex/M3/GCD/Concurrent

Overview of Stopping a Java Thread

It may be necessary to stop a Java l

: execute() run ()
thread for various reasons, e.q. AN m
2.o0ffer ()
> 5 9§9§
callable
WorkerThreads
callable
« Cancel other “speculative computations” callable /
3.take()
results are found o e 4 calll)
 e.g., The ExecutorService invokeAny() WorkQueue T
method cancels other threads after
a FESU|t is fOUI’ld ThreadPoolExecutor
Collection

1.invokeAny ()

Thread _,g
(main thread) '

See docs.orade.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html#invokeAny

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html#invokeAny-java.util.Collection-

Overview of Stopping a Java Thread

 Stopping Java threads is surprisingly hard

-
o

Overview of Stopping a Java Thread

- Stopping Java threads is surprisingly hard - _
* i.e., the "Sorcerer’s Apprentice” problem | i ‘ |
)

L _

¥
e ‘
' r
'
~

-

S
B

See www.youtube.com/watch?v=5rzyuY8-Ao8

http://www.youtube.com/watch?v=5rzyuY8-Ao8

Overview of Stopping a Java Thread

» There’s no safe way to stop a Java thread involuntarily

See docs.oracle.com/javase/8/docs/technotes/quides/
concurrency/threadPrimitiveDeprecation.html

https://docs.oracle.com/javase/8/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html

Overview of Stopping a Java Thread

« There’s no safe way to stop a Java thread involuntarily
» The stop() method is deprecated

since it's inherently unsafe

UNSAFE

See geekexplains.blogspot.com/2008/07/why-
stop-suspend-resume-of-thread-are.html

http://geekexplains.blogspot.com/2008/07/why-stop-suspend-resume-of-thread-are.html

Overview of Stopping a Java Thread

« There’s no safe way to stop a Java thread involuntarily

» The stop() method is deprecated
since it’s inherently unsafe, e.q.

* All locked monitors are unlocked as
the exception propagates up the stack

Call Stack

methodl ()

Tl

l calls 1

method2 () throws
IOException {..}

l calls

method3 () throws
IOException {..}

l calls

method4 () throw
IOException {..}

12

Overview of Stopping a Java Thread

« There’s no safe way to stop a Java thread involuntarily

» The stop() method is deprecated
since it’s inherently unsafe, e.q.

 Any objects protected by these monitors
are thus left in an inconsistent state

Call Stack

methodl ()

Tl

l calls 1

method2 () throws
IOException {..}

l calls

method3 () throws
IOException {..}

l calls

method4 () throw
IOException {..}

13

Overview of Stopping a Java Thread

« There’s no safe way to stop a Java thread involuntarily

» The stop() method is deprecated
since it’s inherently unsafe, e.q.

« There is no way for an object’s methods
to control when stop() takes effect..

Call Stack

methodl ()

l calls

~
Cd

method2 () throws
IOException {..}

l calls

method3 () throws
IOExcePtion {..}

l calls

method4 () throw
IOException {..}

14

Overview of Stopping a Java Thread

« Long running operations in a thread must be coded to stop voluntari/)

Process

public void run/() {

while (true) {
// Check if thread
// should stop

}
}

15

Overview of Stopping a Java Thread

* There are two ways to stop a Java
thread voluntarily

16

Overview of Stopping a Java Thread

« There are two ways to stop a Java public class MyRunnable

thread voluntarily implements Runnable {
' ivat latile bool
» Use a volatile flag private volatile boolean

mIsStopped = false;

public void stopMe () {
mIsStopped = true;

}

public void run() {
while (mIsStopped != true) ({
// a long-running operation

}

See en.wikipedia.org/wiki/Volatile variable#In Java

http://en.wikipedia.org/wiki/Volatile_variable#In_Java

Overview of Stopping a Java Thread

* There are two ways to stop a Java Interrupts
thread voluntarily

An interrupt is an indication to a thread
« Use Java thread interrupt requests that it should stop what it is doing and
do something else. It's up to the
programmer to decide exactly how a
thread responds to an interrupt, but it
is very common for the thread to
terminate. This is the usage
emphasized in this lesson.

A thread sends an interrupt by
invoking interrupt onthe Thread
object for the thread to be interrupted.
For the interrupt mechanism to work
correctly, the interrupted thread must
support its own interruption.

See docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html

Overview of Stopping a Java Thread

« Stopping a Java thread voluntarily requires cooperation between threads

Overview of Stopping a Java Thread

» Stopping a Java thread voluntarily requires cooperation between threads

A thread must check periodically
to see if it has been told to stop

20

Overview of Stopping a Java Thread

- Stopping a Java thread voluntarily requires cooperation between threads

« Thread interrupts are fragile since
they require all parts of a program
follow consistent usage patterns

See weblogs.java.net/blog/2009/03/02/cancelling-tasks-threadinterrupt-fraqgility

https://weblogs.java.net/blog/2009/03/02/cancelling-tasks-threadinterrupt-fragility

Overview of Stopping a Java Thread

« Stopping a Java thread voluntarily requires cooperation between threads

 Voluntary checking is tedious &
error-prone, but it's the only way
to halt Java threads reliably

See stackoverflow.com/questions/8505707/android-best-and-safe-way-to-stop-thread

http://stackoverflow.com/questions/8505707/android-best-and-safe-way-to-stop-thread

Managing the Java Thread
Lifecycle: Overview of
Stopping a Java Thread

23

