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Learning Objectives in this Part of the Lesson

« Understand the various states in the Java thread lifecycle
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The State Machine for the Java Thread Lifecycle

« A Java thread can be in various states (one at a time) during its lifecycle

Enum Thread.State

java.lang.Object
java.lang.Enum<Thread.State>
java.lang.Thread.State

All Implemented Interfaces:

Serializable, Comparable<Thread.State>

Enclosing class:
Thread

public static enum Thread.State
extends Enum<Thread.State>

A thread state. A thread can be in one of the following states:
» NEW

A thread that has not yet started is in this state.
« RUNNABLE

A thread executing in the Java virtual machine is in this state.
« BLOCKED

A thread that is blocked waiting for a monitor lock is in this state.
« WAITING

A thread that is waiting indefinitely for another thread to perform a particular action is in this state.
« TIMED WAITING

A thread that is waiting for another thread to perform an action for up to a specified waiting time is in this state.
« TERMINATED

A thread that has exited is in this state.

A thread can be in only one state at a given point in time. These states are virtual machine states which do not reflect any operating system thread states.

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html



http://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html
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See www.uml-diagrams.org/examples/java-6-thread-state-machine-diagram-example.html
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The Java & Android Linux thread scheduler controls what happens next
since there may be multiple threads waiting for their chance to run
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When the scheduler selects a thread to execute it transitions to the “"Running” state
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The Java execution environment (e.g., JVM, Dalvik,
ART, etc.) then invokes the thread’s run() hook method
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A thread can call various methods that cause it to
wait for a period of time, which suspends the thread
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Transitions to the “"Timed Waiting” state
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The wait time elapses or the operation completes
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When the scheduler selects a thread to execute it transitions to the "Running” state
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The Java execution environment then resumes executing
the method the thread was running when it was suspended
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A thread will block (which suspends the thread) when it tries to access
a ‘quarded resource” (e.g., @ monitor lock) in use by another thread
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When the resource is released by the other thread the
blocked thread will acquire it & become unblocked
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Ironically, the thread state for blocking I/O is “"Runnable,” as discussed
in stackoverflow.com/questions/19981726/java-thread-blocked-status



https://www.youtube.com/redirect?q=https://stackoverflow.com/questions/19981726/java-thread-blocked-status&event=comments&redir_token=vk_F4OYA3SoCImyozXXo_zQsay58MTUxMjIyMzc3OEAxNTEyMTM3Mzc4

The State Machine for the Java Thread Lifecycle
. BIocked)

New Waiting )

Runnable

Scheduler

Running

@

Timed f
Waiting
Terminated )

When the scheduler selects a thread to execute it transitions to the "Running” state
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The Java execution environment then resumes executing
the method the thread was running when it was suspended
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A thread may call wait() on its monitor condition (the monitor lock
must have already been acquired), which suspends the thread
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When another thread calls notify() or notifyAll() waiting thread will be released
(though it may need to transition to the “Blocked” state to reacquire the lock)
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The Java execution environment then resumes executing
the method the thread was running when it was suspended
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The run() method can exit either normally (by “falling
off the end” of run()) or via an unhandled exception
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The Java execution environment can then reclaim the thread’s resources




End of Managing the Java
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