Managing the Java Thread Lifecycle:
state Machine for Java Threads

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand the various states in the Java thread lifecycle

BIocked)

attempt to access
guarded resource

new MyThread() resource
obtained

New

myThread.sta rt\A

Runnable

Waiting)

cond.notify(),
cond.notifyAll()

run() cond.wait()

®
/

Terminated)

Running

Timed <—/
Waiting

wait-time
elapsed

run() method
returns

myThread.sleep()
wait(timeout)
join(timeout)

2

The State Machine
for Java Threads

The State Machine for the Java Thread Lifecycle

« A Java thread can be in various states (one at a time) during its lifecycle

Enum Thread.State

java.lang.Object
java.lang.Enum<Thread.State>
java.lang.Thread.State

All Implemented Interfaces:

Serializable, Comparable<Thread.State>

Enclosing class:
Thread

public static enum Thread.State
extends Enum<Thread.State>

A thread state. A thread can be in one of the following states:
» NEW

A thread that has not yet started is in this state.
« RUNNABLE

A thread executing in the Java virtual machine is in this state.
« BLOCKED

A thread that is blocked waiting for a monitor lock is in this state.
« WAITING

A thread that is waiting indefinitely for another thread to perform a particular action is in this state.
« TIMED WAITING

A thread that is waiting for another thread to perform an action for up to a specified waiting time is in this state.
« TERMINATED

A thread that has exited is in this state.

A thread can be in only one state at a given point in time. These states are virtual machine states which do not reflect any operating system thread states.

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html

http://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html

The State Machine for the Java Thread Lifecycle

Blocked)
new MyThread() resource
obtained

attempt to access
guarded resource

Waiting)

myThread.start() Egﬂﬂﬂgﬂg%io

run()

Runnable ' cond.wait()
Scheduler
Running
wait-time @
elapsed
. run() method

Tlmgd returns f

Waiting
myThread.sleep() Terminated)
wait(timeout)

join(timeout)

See www.uml-diagrams.org/examples/java-6-thread-state-machine-diagram-example.html

http://www.uml-diagrams.org/examples/java-6-thread-state-machine-diagram-example.html

The State Machine for the Java Thread Lifecycle

Blocked)
new MyThread()

Runnable r““o

Scheduler
Runnlng

Timed /
Waiting
Terminated)

Begin by creating a new thread object

The State Machine for the Java Thread Lifecycle

Blocked)
new MyThread()

Waiting)

Runnable r““o

Scheduler
Runnlng

Timed /
Waiting
Terminated)

Transitions to the "New” state

The State Machine for the Java Thread Lifecycle

Runtime Blocked)
thread

stack

myThread.start()
Runnable r“no

Scheduler
Runnlng

Timed /
Waiting
Terminated)

Call start() to launch the thread

The State Machine for the Java Thread Lifecycle

New Waiting)

myThread.start()

Runnable

Runnlng

K_(Terminated)

Transitions to the "Runnable” state

The State Machine for the Java Thread Lifecycle

The Java & Android Linux thread scheduler controls what happens next
since there may be multiple threads waiting for their chance to run

The State Machine for the Java Thread Lifecycle
. BIocked)

New Waiting)

Runnable

Scheduler

Running

@

Timed f
Waiting
Terminated)

When the scheduler selects a thread to execute it transitions to the “"Running” state

The State Machine for the Java Thread Lifecycle

. Blocked)

New Waiting)

Runnable

Scheduler

Running

@

Timed f
Waiting
Terminated)

The Java execution environment (e.g., JVM, Dalvik,
ART, etc.) then invokes the thread’s run() hook method

The State Machine for the Java Thread Lifecycle

. Blocked)

New Waiting)

Runnable '
Scheduler

Runnlng

Timed

Waiting
myThread sleep() Terminated)
wait(timeout)

join(timeout)

A thread can call various methods that cause it to
wait for a period of time, which suspends the thread

The State Machine for the Java Thread Lifecycle

. Blocked)

New Waiting)

Runnable

Scheduler

Runnlng

Timed

Waliting
myThread sleep() Terminated)
wait(timeout)

join(timeout)

Transitions to the “"Timed Waiting” state

The State Machine for the Java Thread Lifecycle

. Blocked)

New Waiting)

Runnable

Scheduler
Runnlng

wait-time
elapsed
Timed
Waiting
Terminated)

The wait time elapses or the operation completes

The State Machine for the Java Thread Lifecycle

New Waiting)

Runnable

Runnlng

K_(Terminated)

wait-time
elapsed

Transitions to the "Runnable” state (i.e., it doesn't start to run immediately)

The State Machine for the Java Thread Lifecycle
. BIocked)

New Waiting)

Runnable

Scheduler

Running

@

Timed f
Waiting
Terminated)

When the scheduler selects a thread to execute it transitions to the "Running” state

The State Machine for the Java Thread Lifecycle

. Blocked)

New Waiting)

Runnable '
Scheduler

Running

Timed (_/ f
Waiting
Terminated)

The Java execution environment then resumes executing
the method the thread was running when it was suspended

The State Machine for the Java Thread Lifecycle

. Blocked)

attempt to access
guarded resource

New Waiting)

Runnable '
Scheduler

Running

Timed / f
Waiting
Terminated)

A thread will block (which suspends the thread) when it tries to access
a ‘quarded resource” (e.g., @ monitor lock) in use by another thread

The State Machine for the Java Thread Lifecycle

. Blocked

attempt to access
guarded resource

New Waiting)

Runnable

Scheduler
Runnlng

Timed /
Waiting
Terminated)

Transitions to the “"Blocked” state

The State Machine for the Java Thread Lifecycle

. Blocked)

resource
acquired

New Waiting)

Runnable '
Scheduler

Running

Timed (_/ f
Waiting
Terminated)

When the resource is released by the other thread the
blocked thread will acquire it & become unblocked

The State Machine for the Java Thread Lifecycle

resource
obtained

New Waiting)

Runnable

Runnlng

K_(Terminated)

Transitions to the "Runnable” state (i.e., it doesn't start to run immediately)

The State Machine for the Java Thread Lifecycle

resource
obtained

New Waiting)

Runnable '

Running

AN

Ironically, the thread state for blocking I/O is “"Runnable,” as discussed
in stackoverflow.com/questions/19981726/java-thread-blocked-status

https://www.youtube.com/redirect?q=https://stackoverflow.com/questions/19981726/java-thread-blocked-status&event=comments&redir_token=vk_F4OYA3SoCImyozXXo_zQsay58MTUxMjIyMzc3OEAxNTEyMTM3Mzc4

The State Machine for the Java Thread Lifecycle
. BIocked)

New Waiting)

Runnable

Scheduler

Running

@

Timed f
Waiting
Terminated)

When the scheduler selects a thread to execute it transitions to the "Running” state

The State Machine for the Java Thread Lifecycle

. Blocked)

New Waiting)

Runnable '
Scheduler

Running

Timed (_/ f
Waiting
Terminated)

The Java execution environment then resumes executing
the method the thread was running when it was suspended

The State Machine for the Java Thread Lifecycle

. Blocked)

New Waiting)

Runnable ' cond.wait()
Scheduler

Running

Timed (_/ f
Waiting
Terminated)

A thread may call wait() on its monitor condition (the monitor lock
must have already been acquired), which suspends the thread

The State Machine for the Java Thread Lifecycle

. Blocked)

New

Runnable

Scheduler
Runnlng

Timed /
Waiting
Terminated)

cond.wait()

Transitions to the “"Waiting” state

The State Machine for the Java Thread Lifecycle

. Blocked)

New Waiting)

cond.notify(),
cond.notifyAll()

Runnable '
Scheduler

Running

Timed (_/ f
Waiting
Terminated)

When another thread calls notify() or notifyAll() waiting thread will be released
(though it may need to transition to the “Blocked” state to reacquire the lock)

The State Machine for the Java Thread Lifecycle

New Waiting)

cond.notify(),
cond.notifyAll()

Runnable

Runnlng

K_(Terminated)

Transitions to the “Runnable” state (i.e., it doesn't start to run immediately)

The State Machine for the Java Thread Lifecycle

. Blocked)

New Waiting)

Runnable

Scheduler

Running

Timed f
Waiting
Terminated)

Transitions to the "Running” state

The State Machine for the Java Thread Lifecycle

. Blocked)

New Waiting)

Runnable '
Scheduler

Running

Timed (_/ f
Waiting
Terminated)

The Java execution environment then resumes executing
the method the thread was running when it was suspended

The State Machine for the Java Thread Lifecycle

. Blocked)

New Waiting)

Runnable '
Scheduler

Running

Timed (_/
Waiting

@

run() method f

exits

Terminated)

The run() method can exit either normally (by “falling
off the end” of run()) or via an unhandled exception

The State Machine for the Java Thread Lifecycle

. Blocked)

New
Runnable '
Scheduler
Running
Timed / C
Waiting
Terminated

Transitions to the “"Terminated” state

The State Machine for the Java Thread Lifecycle

. Blocked)

New Waiting)

Runnable '
Scheduler \ < /

Running

Timed /
Waiting

Terminated

The Java execution environment can then reclaim the thread’s resources

End of Managing the Java
Thread Lifecycle: State
Machine for Java Threads

35

