
Java Phaser:

Key Methods

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand the structure & functionality
of the Java Phaser barrier synchronizer

• Recognize the key methods in the Java
Phaser

Learning Objectives in this Part of the Lesson

3

Key Methods in
Java Phaser

4

Key Methods in Java Phaser
• Phaser has a more complex API than

CountDownLatch or CyclicBarrier

• i.e., it has many methods that support
a range of use cases

5

Key Methods in Java Phaser
• Phaser has a more complex API than

CountDownLatch or CyclicBarrier

• i.e., it has many methods that support
a range of use cases

Fortunately, many of these methods are rarely used in practice

6

• Constructor creates a new object
with an initial phase # of 0

Key Methods in Java Phaser
public class Phaser {

...

public Phaser(int parties) {

...

}

public Phaser() { ... }

...

7

• Constructor creates a new object
with an initial phase # of 0

• This constructor specifies the # of
parties needed to advance to the
next phase

Key Methods in Java Phaser
public class Phaser {

...

public Phaser(int parties) {

...

}

public Phaser() { ... }

...

of registered parties dictates when a phaser can advance to the next phase

8

• Constructor creates a new object
with an initial phase # of 0

• This constructor specifies the # of
parties needed to advance to the
next phase

• This constructor is optional since
parties can always register later

Key Methods in Java Phaser
public class Phaser {

...

public Phaser(int parties) {

...

}

public Phaser() { ... }

...

With Java Phaser the # of parties need not match the # of threads

9

• Constructor creates a new object
with an initial phase # of 0

• This constructor specifies the # of
parties needed to advance to the
next phase

• This constructor doesn’t specify
any parties initially

Key Methods in Java Phaser
public class Phaser {

...

public Phaser(int parties) {

...

}

public Phaser() { ... }

...

10

• Constructor creates a new object
with an initial phase # of 0

• This constructor specifies the # of
parties needed to advance to the
next phase

• This constructor doesn’t specify
any parties initially

• Any thread using a phaser created
via this constructor therefore needs
to register with it before using it

Key Methods in Java Phaser
public class Phaser {

...

public Phaser(int parties) {

...

}

public Phaser() { ... }

...

11

• Phaser’s key methods enable
parties to register, synchronize,
& terminate

Key Methods in Java Phaser
public class Phaser {

...

public int register() { ... }

public int bulkRegister

(int parties) { ... }

public int

arriveAndAwaitAdvance()

{ ... }

public int ArriveAndDeregister()

{ ... }

protected boolean onAdvance

(int phase,

int registeredParties) {

return registeredParties == 0;

}

12

• Phaser’s key methods enable
parties to register, synchronize,
& terminate

• Adds unarrived parties to phaser

Key Methods in Java Phaser
public class Phaser {

...

public int register() { ... }

public int bulkRegister

(int parties) { ... }

of registered parties dictates when a phaser can advance to the next phase

13

• Phaser’s key methods enable
parties to register, synchronize,
& terminate

• Adds unarrived parties to phaser

• Arrive & await advance

Key Methods in Java Phaser
public class Phaser {

...

public int arrive() { ... }

public int awaitAdvance

(int phase)

{ ... }

public int

arriveAndAwaitAdvance()

{ ... }

Having multiple methods provides flexibility wrt arrival & waiting to advance

14

• Phaser’s key methods enable
parties to register, synchronize,
& terminate

• Adds unarrived parties to phaser

• Arrive & await advance

• Arrives at phaser, but does not
block until other parties arrive

Key Methods in Java Phaser
public class Phaser {

...

public int arrive() { ... }

15

• Phaser’s key methods enable
parties to register, synchronize,
& terminate

• Adds unarrived parties to phaser

• Arrive & await advance

• Arrives at phaser, but does not
block until other parties arrive

• Returns current phase # or a
negative value if the phaser
has already terminated

Key Methods in Java Phaser
public class Phaser {

...

public int arrive() { ... }

This method is rarely used in practice

16

• Phaser’s key methods enable
parties to register, synchronize,
& terminate

• Adds unarrived parties to phaser

• Arrive & await advance

• Arrives at phaser, but does not
block until other parties arrive

• Blocks until the phase of this
phaser advances from the given
phase value

Key Methods in Java Phaser
public class Phaser {

...

public int arrive() { ... }

public int awaitAdvance

(int phase)

{ ... }

17

• Phaser’s key methods enable
parties to register, synchronize,
& terminate

• Adds unarrived parties to phaser

• Arrive & await advance

• Arrives at phaser, but does not
block until other parties arrive

• Blocks until the phase of this
phaser advances from the given
phase value

• Returns immediately if current
phase != given phase

Key Methods in Java Phaser
public class Phaser {

...

public int arrive() { ... }

public int awaitAdvance

(int phase)

{ ... }

This method is rarely used in practice

18

• Phaser’s key methods enable
parties to register, synchronize,
& terminate

• Adds unarrived parties to phaser

• Arrive & await advance

• Arrives at phaser, but does not
block until other parties arrive

• Blocks until the phase of this
phaser advances from the given
phase value

• Arrives at phaser & blocks until
other parties arrive

Key Methods in Java Phaser
public class Phaser {

...

public int arrive() { ... }

public int awaitAdvance

(int phase)

{ ... }

public int

arriveAndAwaitAdvance()

{ ... }

Equivalent in effect to
awaitAdvance(arrive())

19

• Phaser’s key methods enable
parties to register, synchronize,
& terminate

• Adds unarrived parties to phaser

• Arrive & await advance

• Arrives at phaser, but does not
block until other parties arrive

• Blocks until the phase of this
phaser advances from the given
phase value

• Arrives at phaser & blocks until
other parties arrive

Key Methods in Java Phaser
public class Phaser {

...

public int arrive() { ... }

public int awaitAdvance

(int phase)

{ ... }

public int

arriveAndAwaitAdvance()

{ ... }

This method is commonly used & is similar to await() on a Java CyclicBarrier

20

• Phaser’s key methods enable
parties to register, synchronize,
& terminate

• Adds unarrived parties to phaser

• Arrive & await advance

• Arrive at the phaser & deregister
without waiting for others to arrive

Key Methods in Java Phaser
public class Phaser {

...

public int arriveAndDeregister()

{ ... }

21

• Phaser’s key methods enable
parties to register, synchronize,
& terminate

• Adds unarrived parties to phaser

• Arrive & await advance

• Arrive at the phaser & deregister
without waiting for others to arrive

• Reduces # of parties required
to advance in future phases

Key Methods in Java Phaser
public class Phaser {

...

public int arriveAndDeregister()

{ ... }

Often used by the party that controls the initialization of a Phaser

22

• Phaser’s key methods enable
parties to register, synchronize,
& terminate

• Adds unarrived parties to phaser

• Arrive & await advance

• Arrive at the phaser & deregister
without waiting for others to arrive

• Hook method performs an action
upon pending phase advance

Key Methods in Java Phaser
public class Phaser {

...

protected boolean onAdvance

(int phase,

int registeredParties) {

return registeredParties == 0;

}

This method is invoked upon arrival
of the party advancing the phaser

All other waiting parties are “dormant” when this hook method runs

23

• Phaser’s key methods enable
parties to register, synchronize,
& terminate

• Adds unarrived parties to phaser

• Arrive & await advance

• Arrive at the phaser & deregister
without waiting for others to arrive

• Hook method performs an action
upon pending phase advance

Key Methods in Java Phaser
public class Phaser {

...

protected boolean onAdvance

(int phase,

int registeredParties) {

return registeredParties == 0;

}

This hook method is similar to the barrier action on a Java CyclicBarrier

24

• Phaser’s key methods enable
parties to register, synchronize,
& terminate

• Adds unarrived parties to phaser

• Arrive & await advance

• Arrive at the phaser & deregister
without waiting for others to arrive

• Hook method performs an action
upon pending phase advance

• Also initiates termination by
returning a ‘true’ Boolean value

Key Methods in Java Phaser
public class Phaser {

...

protected boolean onAdvance

(int phase,

int registeredParties) {

return registeredParties == 0;

}

25

• Phaser’s key methods enable
parties to register, synchronize,
& terminate

• Adds unarrived parties to phaser

• Arrive & await advance

• Arrive at the phaser & deregister
without waiting for others to arrive

• Hook method performs an action
upon pending phase advance

• Also initiates termination by
returning a ‘true’ Boolean value

Key Methods in Java Phaser
public class Phaser {

...

protected boolean onAdvance

(int phase,

int registeredParties) {

return registeredParties == 0;

}

Default implementation
terminates the phaser if there

are no registered parties

26

End of Java Phaser:
Key Methods

27

1. What of the following are benefit of the Java Phaser
over the CyclicBarrier?

a. It supports fixed-size “cyclic” & “entry” and/or
“exit” barriers who # of parties match the # of
threads

b. It supports variable-size “cyclic” & “entry” and/or
“exit” barriers whose # of parties can vary
dynamically

c. It uses the AbstractQueuedSynchronizer framework
to enhance reuse

d. They provide better support for fixed-sized # of
parties

Discussion Questions

