
Java Phaser:

Structure & Functionality

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand the structure & functionality
of the Java Phaser barrier synchronizer

Learning Objectives in this Part of the Lesson

3

Overview of
Java Phaser

4

• Implements yet another Java barrier
synchronizer

Overview of Java Phaser

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Phaser.html

public class Phaser {

...

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Phaser.html

5

• Implements yet another Java barrier
synchronizer

• Allows a variable (or fixed) # of threads
to wait for all operations performed in other
threads to complete before proceeding

Overview of Java Phaser
public class Phaser {

...

One human known use is different work-crews with
different #’s of workers coordinating to build a house

6

• Implements yet another Java barrier
synchronizer

• Allows a variable (or fixed) # of threads
to wait for all operations performed in other
threads to complete before proceeding

• Well-suited for variable-size “cyclic”, “entry”,
and/or “exit” barriers

Overview of Java Phaser
public class Phaser {

...

7

• Implements yet another Java barrier
synchronizer

• Allows a variable (or fixed) # of threads
to wait for all operations performed in other
threads to complete before proceeding

• Well-suited for variable-size “cyclic”, “entry”,
and/or “exit” barriers

• # of parties can vary dynamically

Overview of Java Phaser

A Phaser may be overkill for fixed-sized barriers..

public class Phaser {

...

8

• Implements yet another Java barrier
synchronizer

• Allows a variable (or fixed) # of threads
to wait for all operations performed in other
threads to complete before proceeding

• Well-suited for variable-size “cyclic”, “entry”,
and/or “exit” barriers

• # of parties can vary dynamically

Overview of Java Phaser
public class Phaser {

...

Does not implement
an interface

9

• Does not apply Bridge pattern

Overview of Java Phaser

See share/classes/java/util/concurrent/Phaser.java

Phaser

Sync NonFairSync

AbstractQueued

Synchronizer

public class Phaser {

...

share/classes/java/util/concurrent/Phaser.java

10

• Does not apply Bridge pattern

• Nor does it use the Abstract
QueuedSynchronizer framework

Overview of Java Phaser

Sync NonFairSync

AbstractQueued

SynchronizerPhaser

public class Phaser {

...

11

• Instead, it defines a # of fields that
implement a phaser

Overview of Java Phaser
public class Phaser {

private volatile long state;

...

See src/share/classes/java/util/concurrent/Phaser.java

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent/Phaser.java

12

• Instead, it defines a # of fields that
implement a phaser

• Primary state representation,
holding four bit-fields

Overview of Java Phaser
public class Phaser {

private volatile long state;

See en.wikipedia.org/wiki/Bit_field

https://en.wikipedia.org/wiki/Bit_field

13

• Instead, it defines a # of fields that
implement a phaser

• Primary state representation,
holding four bit-fields:

• Unarrived

• the # of parties yet to
hit barrier (bits 0-15)

Overview of Java Phaser
public class Phaser {

private volatile long state;

14

• Instead, it defines a # of fields that
implement a phaser

• Primary state representation,
holding four bit-fields:

• Unarrived

• Parties

• the # of parties to wait
for before advancing to the
next phase (bits 16-31)

Overview of Java Phaser
public class Phaser {

private volatile long state;

15

• Instead, it defines a # of fields that
implement a phaser

• Primary state representation,
holding four bit-fields:

• Unarrived

• Parties

• Phase

• the generation of the barrier
(bits 32-62)

Overview of Java Phaser
public class Phaser {

private volatile long state;

16

• Instead, it defines a # of fields that
implement a phaser

• Primary state representation,
holding four bit-fields:

• Unarrived

• Parties

• Phase

• Terminated

• set if barrier is terminated (bit 63 / sign)

Overview of Java Phaser
public class Phaser {

private volatile long state;

17

• Instead, it defines a # of fields that
implement a phaser

• Primary state representation,
holding four bit-fields:

• Unarrived

• the # of parties yet to
hit barrier (bits 0-15)

• Parties

• the # of parties to wait
(bits 16-31)

• Phase

• the generation of the barrier
(bits 32-62)

• Terminated

• set if barrier is terminated (bit 63 / sign)

Overview of Java Phaser
public class Phaser {

private volatile long state;

To efficiently maintain atomicity, these
values are packed into a single (atomic)
long that is updated via CAS operations

18

End of Java Phaser:
Structure & Functionality

19

1. What of the following are benefit of the Java Phaser
over the CyclicBarrier?

a. It supports fixed-size “cyclic” & “entry” and/or
“exit” barriers who # of parties match the # of
threads

b. It supports variable-size “cyclic” & “entry” and/or
“exit” barriers whose # of parties can vary
dynamically

c. It uses the AbstractQueuedSynchronizer framework
to enhance reuse

d. They provide better support for fixed-sized # of
parties

Discussion Questions

Java Phaser:

Key Methods

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

21

• Understand the structure & functionality
of the Java Phaser barrier synchronizer

• Recognize the key methods in the Java
Phaser

Learning Objectives in this Part of the Lesson

22

Key Methods in
Java Phaser

23

• Constructor creates a new object
with an initial phase # of 0

Key Methods in Java Phaser
public class Phaser {

...

public Phaser() { ... }

public Phaser(int parties) {

...

}

24

• Constructor creates a new object
with an initial phase # of 0

• Any thread using this Phaser
needs to register for it first

Key Methods in Java Phaser
public class Phaser {

...

public Phaser() { ... }

public Phaser(int parties) {

...

}

25

• Constructor creates a new object
with an initial phase # of 0

• Any thread using this Phaser
needs to register for it first

• Can also specify the # of parties
needed to advance to next phase

Key Methods in Java Phaser
public class Phaser {

...

public Phaser() { ... }

public Phaser(int parties) {

...

}

26

• Constructor creates a new object
with an initial phase # of 0

• Any thread using this Phaser
needs to register for it first

• Can also specify the # of parties
needed to advance to next phase

• However, using this constructor is
optional since parties can always
register later

Key Methods in Java Phaser
public class Phaser {

...

public Phaser() { ... }

public Phaser(int parties) {

...

}

27

• Phaser’s key methods enable
parties to register, synchronize,
& terminate

Key Methods in Java Phaser
public class Phaser {

...

public int register() { ... }

public int bulkRegister

(int parties) { ... }

public int

arriveAndAwaitAdvance()

{ ... }

public int ArriveAndDeregister()

{ ... }

protected boolean onAdvance

(int phase,

int registeredParties) {

return registeredParties == 0;

}

28

• Phaser’s key methods enable
parties to register, synchronize,
& terminate

• Adds unarrived parties to phaser

Key Methods in Java Phaser
public class Phaser {

...

public int register() { ... }

public int bulkRegister

(int parties) { ... }

of registered parties dictates when a phaser can advance

29

• Phaser’s key methods enable
parties to register, synchronize,
& terminate

• Adds unarrived parties to phaser

• Arrive & await advance

Key Methods in Java Phaser
public class Phaser {

...

public int arrive() { ... }

public int awaitAdvance

(int phase)

{ ... }

public int

arriveAndAwaitAdvance()

{ ... }

These methods provide flexibility wrt arrival & waiting to advance

30

• Phaser’s key methods enable
parties to register, synchronize,
& terminate

• Adds unarrived parties to phaser

• Arrive & await advance

• Arrives at phaser without
waiting for others to arrive

Key Methods in Java Phaser
public class Phaser {

...

public int arrive() { ... }

public int awaitAdvance

(int phase)

{ ... }

public int

arriveAndAwaitAdvance()

{ ... }

31

• Phaser’s key methods enable
parties to register, synchronize,
& terminate

• Adds unarrived parties to phaser

• Arrive & await advance

• Arrives at phaser without
waiting for others to arrive

• Returns arrival phase #

Key Methods in Java Phaser
public class Phaser {

...

public int arrive() { ... }

public int awaitAdvance

(int phase)

{ ... }

public int

arriveAndAwaitAdvance()

{ ... }

32

• Phaser’s key methods enable
parties to register, synchronize,
& terminate

• Adds unarrived parties to phaser

• Arrive & await advance

• Arrives at phaser without
waiting for others to arrive

• Returns arrival phase #

• Or negative value if
phaser terminated

Key Methods in Java Phaser
public class Phaser {

...

public int arrive() { ... }

public int awaitAdvance

(int phase)

{ ... }

public int

arriveAndAwaitAdvance()

{ ... }

33

• Phaser’s key methods enable
parties to register, synchronize,
& terminate

• Adds unarrived parties to phaser

• Arrive & await advance

• Arrives at phaser without
waiting for others to arrive

• Awaits the phase of this phaser
to advance from the given
phase value

Key Methods in Java Phaser
public class Phaser {

...

public int arrive() { ... }

public int awaitAdvance

(int phase)

{ ... }

public int

arriveAndAwaitAdvance()

{ ... }

34

• Phaser’s key methods enable
parties to register, synchronize,
& terminate

• Adds unarrived parties to phaser

• Arrive & await advance

• Arrives at phaser without
waiting for others to arrive

• Awaits the phase of this phaser
to advance from the given
phase value

• Returns immediately if current
phrase != given phase

Key Methods in Java Phaser
public class Phaser {

...

public int arrive() { ... }

public int awaitAdvance

(int phase)

{ ... }

public int

arriveAndAwaitAdvance()

{ ... }

35

• Phaser’s key methods enable
parties to register, synchronize,
& terminate

• Adds unarrived parties to phaser

• Arrive & await advance

• Arrives at phaser without
waiting for others to arrive

• Awaits the phase of this phaser
to advance from the given
phase value

• Arrives at phaser & awaits
the arrival of others

Key Methods in Java Phaser
public class Phaser {

...

public int arrive() { ... }

public int awaitAdvance

(int phase)

{ ... }

public int

arriveAndAwaitAdvance()

{ ... }

Equivalent in effect to
awaitAdvance(arrive())

36

• Phaser’s key methods enable
parties to register, synchronize,
& terminate

• Adds unarrived parties to phaser

• Arrive & await advance

• Arrive at the phaser & deregister
without waiting for others to arrive

Key Methods in Java Phaser
public class Phaser {

...

public int arriveAndDeregister()

{ ... }

37

• Phaser’s key methods enable
parties to register, synchronize,
& terminate

• Adds unarrived parties to phaser

• Arrive & await advance

• Arrive at the phaser & deregister
without waiting for others to arrive

• Reduces # of parties required
to advance in future phases

Key Methods in Java Phaser
public class Phaser {

...

public int arriveAndDeregister()

{ ... }

38

• Phaser’s key methods enable
parties to register, synchronize,
& terminate

• Adds unarrived parties to phaser

• Arrive & await advance

• Arrive at the phaser & deregister
without waiting for others to arrive

• Hook method performs an action
upon pending phase advance

Key Methods in Java Phaser
public class Phaser {

...

protected boolean onAdvance

(int phase,

int registeredParties) {

return registeredParties == 0;

}

39

• Phaser’s key methods enable
parties to register, synchronize,
& terminate

• Adds unarrived parties to phaser

• Arrive & await advance

• Arrive at the phaser & deregister
without waiting for others to arrive

• Hook method performs an action
upon pending phase advance

• Also initiates termination by
returning true

Key Methods in Java Phaser
public class Phaser {

...

protected boolean onAdvance

(int phase,

int registeredParties) {

return registeredParties == 0;

}

40

• Phaser’s key methods enable
parties to register, synchronize,
& terminate

• Adds unarrived parties to phaser

• Arrive & await advance

• Arrive at the phaser & deregister
without waiting for others to arrive

• Hook method performs an action
upon pending phase advance

• Also initiates termination by
returning true

Key Methods in Java Phaser
public class Phaser {

...

protected boolean onAdvance

(int phase,

int registeredParties) {

return registeredParties == 0;

}

Default implementation
terminates if there are
no registered parties

41

End of Java Phaser:
Key Methods

42

1. What of the following are benefit of the Java Phaser
over the CyclicBarrier?

a. It supports fixed-size “cyclic” & “entry” and/or
“exit” barriers who # of parties match the # of
threads

b. It supports variable-size “cyclic” & “entry” and/or
“exit” barriers whose # of parties can vary
dynamically

c. It uses the AbstractQueuedSynchronizer framework
to enhance reuse

d. They provide better support for fixed-sized # of
parties

Discussion Questions

