Java Phaser-
Structure & Functionality

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderbilt University
Nashuille, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

 Understand the structure & functionality
of the Java Phaser barrier synchronizer

Class Phaser

java.lang.Object
java.util.concurrent.Phaser

public class Phaser
extends Object

A reusable synchronization barrier, similar in
functionality to CyclicBarrier and
CountDownLatch but supporting more flexible
usage.

Registration. Unlike the case for other barriers,
the number of parties registered to synchronize
on a phaser may vary over time. Tasks may be
registered at any time (using methods
register(), bulkRegister(int), or forms of
constructors establishing initial numbers of
parties), and optionally deregistered upon any
arrival (using arriveAndDeregister()). As is the
case with most basic synchronization constructs,
registration and deregistration affect only internal
counts; they do not establish any further internal
bookkeeping, so tasks cannot query whether they
are registered. (However, you can introduce such
bookkeeping by subclassing this class.)

Overview of
Java Phaser

Overview of Java Phaser

- Implements yet another Java barrier public class Phaser {
synchronizer “e

Class Phaser

java.lang.Object
java.util.concurrent.Phaser

public class Phaser
extends Object

A reusable synchronization barrier, similar in functionality to CyclicBarrier and CountDownlLatch but supporting more flexible usage.

Registration. Unlike the case for other barriers, the number of parties registered to synchronize on a phaser may vary over time. Tasks
may be registered at any time (using methods register(), bulkRegister(int), or forms of constructors establishing initial numbers of
parties), and optionally deregistered upon any arrival (using arriveAndDeregister()). As is the case with most basic synchronization
constructs, registration and deregistration affect only internal counts; they do not establish any further internal bookkeeping, so tasks
cannot query whether they are registered. (However, you can introduce such bookkeeping by subclassing this class.)

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Phaser.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Phaser.html

Overview of Java Phaser

« Implements yet another Java barrier public class Phaser ({
synchronizer

 Allows a variable (or fixed) # of threads
to wait for all operations performed in other | _
threads to complete before proceeding

Class Phaser

java.lang.Object
java.util.concurrent.Phaser

public class Phaser
extends Object

A reusable synchronization barrier, similar in functionality to CyclicBarrier and CountDownlLatch but supporting more flexible usage.

Registration. Unlike the case for other barriers, the number of parties registered to synchronize on a phaser may vary over time. Tasks
may be registered at any time (using methods register(), bulkRegister(int), or forms of constructors establishing initial numbers of
parties), and optionally deregistered upon any arrival (using arriveAndDeregister()). As is the case with most basic synchronization
constructs, registration and deregistration affect only internal counts; they do not establish any further internal bookkeeping, so tasks
cannot query whether they are registered. (However, you can introduce such bookkeeping by subclassing this class.)

One human known use is different work-crews with
different #'s of workers coordinating to build a house

Overview of Java Phaser

- Implements yet another Java barrier public class Phaser {
synchronizer “e

7\

« Well-suited for variable-size “cyclic”, “entry”,
and/or “exit” barriers

Class Phaser

java.lang.Object
java.util.concurrent.Phaser

public class Phaser
extends Object

A reusable synchronization barrier, similar in functionality to CyclicBarrier and CountDownlLatch but supporting more flexible usage.

Registration. Unlike the case for other barriers, the number of parties registered to synchronize on a phaser may vary over time. Tasks
may be registered at any time (using methods register(), bulkRegister(int), or forms of constructors establishing initial numbers of
parties), and optionally deregistered upon any arrival (using arriveAndDeregister()). As is the case with most basic synchronization
constructs, registration and deregistration affect only internal counts; they do not establish any further internal bookkeeping, so tasks
cannot query whether they are registered. (However, you can introduce such bookkeeping by subclassing this class.)

6

Overview of Java Phaser

- Implements yet another Java barrier public class Phaser {
synchronizer “e

« # of parties can vary dynamically

Class Phaser [
java.lang.Object

i y.
java.util.concurrent.Phaser O » E R K I L L

Why have one, when you can have 200?

public class Phaser
extends Object

A reusable synchronization barrier, similar in functionality to CyclicBarrier and CountDownlLatch but supporting more flexible usage.

Registration. Unlike the case for other barriers, the number of parties registered to synchronize on a phaser may vary over time. Tasks
may be registered at any time (using methods register(), bulkRegister(int), or forms of constructors establishing initial numbers of
parties), and optionally deregistered upon any arrival (using arriveAndDeregister()). As is the case with most basic synchronization
constructs, registration and deregistration affect only internal counts; they do not establish any further internal bookkeeping, so tasks
cannot query whether they are registered. (However, you can introduce such bookkeeping by subclassing this class.)

A Phaser may be overkill for fixed-sized barriers..

Overview of Java Phaser

- Implements yet another Java barrier public class Phaser {
synchronizer “e

Does not implement
an interface

Class Phaser

java.lang.Object
java.util.concurrent.Phaser

public class Phaser
extends Object

A reusable synchronization barrier, similar in functionality to CyclicBarrier and CountDownlLatch but supporting more flexible usage.

Registration. Unlike the case for other barriers, the number of parties registered to synchronize on a phaser may vary over time. Tasks
may be registered at any time (using methods register(), bulkRegister(int), or forms of constructors establishing initial numbers of
parties), and optionally deregistered upon any arrival (using arriveAndDeregister()). As is the case with most basic synchronization
constructs, registration and deregistration affect only internal counts; they do not establish any further internal bookkeeping, so tasks
cannot query whether they are registered. (However, you can introduce such bookkeeping by subclassing this class.)

8

Overview of Java Phaser

* Does not apply Bridge pattern

imp

public class Phaser {

Phaser

operation()

JA\

RefinedAbstracti

'| imp.operationl

Ab
Sy

actQueued
hronizer

ope

ionlmp()

A

Sync

operationlmp()

NonFairSync

operationimp()

See share/classes/java/util/concurrent/Phaser.java

share/classes/java/util/concurrent/Phaser.java

Overview of Java Phaser

public class Phaser {

* Does not apply Bridge pattern

* Nor does it use the Abstract
QueuedSynchronizer framework

JA\

RefinedAbstracti

'| imp.operationl

imp AbXxactQueued
Phaser SyREhronizer
operation() oper@ionimp()

A

Sync

operationlmp()

NonFairSync

operationimp()

10

Overview of Java Phaser

« Instead, it defines a # of fields that public class Phaser ({
implement a phaser private volatile long state;

See src/share/classes/java/util/concurrent/Phaser.java

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent/Phaser.java

Overview of Java Phaser

« Instead, it defines a # of fields that public class Phaser ({
implement a phaser private volatile long state;

« Primary state representation,
holding four bit-fields

See en.wikipedia.org/wiki/Bit field

https://en.wikipedia.org/wiki/Bit_field

Overview of Java Phaser

« Instead, it defines a # of fields that public class Phaser ({
implement a phaser private volatile long state;

« Primary state representation,
holding four bit-fields:

e Unarrived

 the # of parties yet to
hit barrier (bits 0-15)

13

Overview of Java Phaser

« Instead, it defines a # of fields that public class Phaser ({
implement a phaser private volatile long state;

« Primary state representation,
holding four bit-fields:

o Parties

« the # of parties to wait
for before advancing to the
next phase (bits 16-31)

14

Overview of Java Phaser

« Instead, it defines a # of fields that public class Phaser ({
implement a phaser private volatile long state;

« Primary state representation,
holding four bit-fields:

e Phase

« the generation of the barrier
(bits 32-62)

15

Overview of Java Phaser

« Instead, it defines a # of fields that public class Phaser ({
implement a phaser private volatile long state;

« Primary state representation,
holding four bit-fields:

« Jerminated
« set if barrier is terminated (bit 63 / sign)

16

Overview of Java Phaser

« Instead, it defines a # of fields that public class Phaser ({
implement a phaser private volatile long state;
« Primary state representation,

holding four bit-fields:
o Unarrived To efficiently maintain atomicity, these
: lues are packed into a single (atomic)
. the # of parties yet to va . . .
hit barrier (bits 0-15) long that is updated via CAS operations
» Parties
« the # of parties to wait
(bits 16-31)
« Phase
« the generation of the barrier
(bits 32-62)

« Jerminated
- set if barrier is terminated (bit 63 / sign)

17

End of Java Phaser:
Structure & Functionality

18

Discussion Questions

1. What of the following are benefit of the Java Phaser
over the CyclicBarrier?

a. It supports fixed-size "cyclic” & "entry” and/or
‘exit” barriers who # of parties match the # of
threads

b. It supports variable-size "cyclic” & “entry” and/or
‘exit” barriers whose # of parties can vary
dynamically

C. It uses the AbstractQueuedSynchronizer framework
to enhance reuse

d. They provide better support for fixed-sized # of
parties

19

Douglas C. Schmidt
@ d.schmidt@uandernilt.edu
- www.dre.vanderhilt.edu/~schmidt

E ’ Institute for Software
Integrated Systems
Vanderbilt University

Nashuille, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Recognize the key methods in the Java

Phaser

<<Java Class>>
(& Phaser

@ Phaser()

& Phaser(int)

& Phaser(Phaser)

@ Phaser(Phaser,int)

@ register():int

@ bulkRegister(int):int

@ arrive():int

@ arriveAndDeregister():int

@ arriveAndAwaitAdvance():int
@ awaitAdvance(int):int

@ awaitAdvancelnterruptibly(int):int
@ awaitAdvancelnterruptibly(int,long, TimeUnit):int
@ forceTermination():voic

& getPhase():int

@ getRegisteredParties():int

@ getArrivedParties():int

@ getUnarrivedParties():int

@ getParent():Phaser

@ getRoot():Phaser

@ isTerminated():boolean

< onAdvance(int,int):boolean
@ toString()

21

Key Methods in
Java Phaser

22

Key Methods in Java Phaser

« Constructor creates a new object public class Phaser ({
with an initial phase # of O e
public Phaser() { ... }

public Phaser (int parties) {

}

23

Key Methods in Java Phaser

« Constructor creates a new object public class Phaser {
with an initial phase # of 0

 Any thread using this Phaser
needs to register for it first

public Phaser() { ... }
public Phaser (int parties) {

}

24

Key Methods in Java Phaser

» Constructor creates a new object public class Phaser {

with an initial phase # of 0 e
public Phaser() { ... }

public Phaser (int parties) {
« Can also specify the # of parties
needed to advance to next phase '}

25

Key Methods in Java Phaser

» Constructor creates a new object public class Phaser {

with an initial phase # of 0 e
public Phaser() { ... }

public Phaser (int parties) {
« Can also specify the # of parties
needed to advance to next phase '}

» However, using this constructor is
optional since parties can always
register later

26

Key Methods in Java Phaser

* Phaser’s key methods enable
parties to register, synchronize,
& terminate

public class Phaser {
public int register() { ... }

public int bulkRegister
(int parties) { ... }

public int
arriveAndAwaitAdvance ()

{ ... 1}

public int ArriveAndDeregister ()
{ ...}

protected boolean onAdvance
(int phase,
int registeredParties) ({
return registeredParties == 0;

}

27

Key Methods in Java Phaser

« Phaser’s key methods enable public class Phaser {
parties to register, synchronize, ‘e
& terminate public int register() { ... }
* Adds unarrived parties to phaser jup15c int bulkRegister
(int parties) { ... }

of registered parties dictates when a phaser can advance

Key Methods in Java Phaser

« Phaser’s key methods enable public class Phaser {
parties to register, synchronize, -
& terminate public int arrive() { ... }
public int awaitAdvance
« Arrive & await advance (int phase)
{ ...}
public int

arriveAndAwaitAdvance ()

{ ...}

These methods provide flexibility wrt arrival & waiting to advance

Key Methods in Java Phaser

« Phaser’s key methods enable public class Phaser {
parties to register, synchronize, -
& terminate public int arrive() {

public int awaitAdvance
* Arrive & await advance (int phase)

 Arrives at phaser without o)

waiting for others to arrive public int

arriveAndAwaitAdvance ()

{ ...}

}

30

Key Methods in Java Phaser

« Phaser’s key methods enable public class Phaser {
parties to register, synchronize, -
& terminate public int arrive() { ... }

public int awaitAdvance

* Arrive & await advance (int phase)
 Arrives at phaser without el
waiting for others to arrive L
public int

« Returns arrival phase # arriveAndAwaitAdvance ()
{ ...}

31

Key Methods in Java Phaser

« Phaser’s key methods enable public class Phaser {
parties to register, synchronize, -
& terminate public int arrive() { ... }

public int awaitAdvance
* Arrive & await advance (int phase)

 Arrives at phaser without el
waiting for others to arrive L
public int

« Returns arrival phase # arriveAndAwaitAdvance ()

« Or negative value if t...}

phaser terminated

32

Key Methods in Java Phaser

« Phaser’s key methods enable public class Phaser {
parties to register, synchronize, -
& terminate public int arrive() { ... }
public int awaitAdvance
 Arrive & await advance (int phase)
{ ...}
public int
« Awaits the phase of this phaser arriveAndAwaitAdvance ()
to advance from the given { ...}
phase value

33

Key Methods in Java Phaser

« Phaser’s key methods enable public class Phaser {
parties to register, synchronize, ‘e
& terminate public int arrive() { ... }
public int awaitAdvance
 Arrive & await advance (int phase)
{ ...}
public int
« Awaits the phase of this phaser arriveAndAwaitAdvance ()
to advance from the given { ...}
phase value

« Returns immediately if current
phrase != given phase

34

Key Methods in Java Phaser

« Phaser’s key methods enable public class Phaser {
parties to register, synchronize, -
public int awaitAdvance
« Arrive & await advance (int phase)
{ ...}
public int

arriveAndAwaitAdvance ()

{ ...}

 Arrives at phaser & awaits
the arrival of others

Equivalent in effect to
awaitAdvance(arrive())

35

Key Methods in Java Phaser

« Phaser’s key methods enable public class Phaser {
parties to register, synchronize,
& terminate

public int arriveAndDeregister ()

{ ... 1}

 Arrive at the phaser & deregister
without waiting for others to arrive

36

Key Methods in Java Phaser

« Phaser’s key methods enable public class Phaser {
parties to register, synchronize,
& terminate

public int arriveAndDeregister ()

{ ... 1}

 Arrive at the phaser & deregister
without waiting for others to arrive

« Reduces # of parties required
to advance in future phases

37

Key Methods in Java Phaser

« Phaser’s key methods enable public class Phaser {
parties to register, synchronize, .
& terminate protected boolean onAdvance

(int phase,
int registeredParties) ({
return registeredParties == 0;

}

« Hook method performs an action
upon pending phase advance

38

Key Methods in Java Phaser

« Phaser’s key methods enable public class Phaser {
parties to register, synchronize, e
& terminate protected boolean onAdvance

(int phase,
int registeredParties) ({
return registeredParties == 0;

}

« Hook method performs an action
upon pending phase advance

« Also initiates termination by
returning true

39

Key Methods in Java Phaser

« Phaser’s key methods enable public class Phaser {
parties to register, synchronize, e
& terminate protected boolean onAdvance

(int phase,
int registeredParties) ({
return registeredParties == O0;

}

« Hook method performs an action

upon pending phase advance Default implementation
- Also initiates termination by terminates if there are
returning true no registered parties

40

End of Java Phaser:
Key Methods

41

Discussion Questions

1. What of the following are benefit of the Java Phaser
over the CyclicBarrier?

a. It supports fixed-size "cyclic” & “entry” and/or
‘exit” barriers who # of parties match the # of
threads

b. It supports variable-size "cyclic” & “entry” and/or
‘exit” barriers whose # of parties can vary
dynamically

C. It uses the AbstractQueuedSynchronizer framework
to enhance reuse

d. They provide better support for fixed-sized # of
parties

42

