Java CyclicBarrier:
Structure & Functionality

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderbilt University
Nashuille, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

 Understand the structure & functionality
of Java CountDownLatch

Class CyclicBarrier

java.lang.Object
java.util.concurrent.CyclicBarrier

public class CyclicBarrier
extends Object

A synchronization aid that allows a set of
threads to all wait for each other to reach a
common barrier point. CyclicBarriers are useful
in programs involving a fixed sized party of
threads that must occasionally wait for each
other. The barrier is called cyclic because it can
be re-used after the waiting threads are
released.

A CyclicBarrier supports an optional Runnable
command that is run once per barrier point,
after the last thread in the party arrives, but
before any threads are released. This barrier
action is useful for updating shared-state before
any of the parties continue.

Sample usage: Here is an example of using a
barrier in a parallel decomposition design:

Overview of Java
CyclicBarrier

Overview of Java CyclicBarrier

« Implements another Java barrier public class CyclicBarrier {
synchronizer e

Class CyclicBarrier

java.lang.Object
java.util.concurrent.CyclicBarrier

public class CyclicBarrier
extends Object

A synchronization aid that allows a set of threads to all wait for each other to reach a common barrier point. CyclicBarriers are

useful in programs involving a fixed sized party of threads that must occasionally wait for each other. The barrier is called cyclic
because it can be re-used after the waiting threads are released.

A CyclicBarrier supports an optional Eunnab le command that is run once per barrier point, after the last thread in the

party arrives, but before any threads are released. This barrier action is useful for updating shared-state before any of the parties
continue.

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CyclicBarrier.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CyclicBarrier.html

Overview of Java CyclicBarrier

« Implements another Java barrier public class CyclicBarrier {
synchronizer

other to reach a common barrier point
« Threads are referred to as “parties”

Class CyclicBarrier

java.lang.Object
java.util.concurrent.CyclicBarrier

public class CyclicBarrier
extends Object

A synchronization aid that allows a set of threads to all wait for each other to reach a common barrier point. CyclicBarriers are

useful in programs involving a fixed sized party of threads that must occasionally wait for each other. The barrier is called cyclic
because it can be re-used after the waiting threads are released.

A CyclicBarrier supports an optional Eunnab le command that is run once per barrier point, after the last thread in the

party arrives, but before any threads are released. This barrier action is useful for updating shared-state before any of the parties
continue.

One human known use is an assembly line where fixed-sized groups of
workers coordinate to build various parts of cars moving by in phases

Overview of Java CyclicBarrier

« Implements another Java barrier public class CyclicBarrier ({
synchronizer e

« Well-suited for fixed-size “cyclic”, “entry”,
and/or “exit” barriers

Class CyclicBarrier

java.lang.Object
java.util.concurrent.CyclicBarrier

public class CyclicBarrier
extends Object

A synchronization aid that allows a set of threads to all wait for each other to reach a common barrier point. CyclicBarriers are

useful in programs involving a fixed sized party of threads that must occasionally wait for each other. The barrier is called cyclic
because it can be re-used after the waiting threads are released.

A CyclicBarrier supports an optional Eunnab le command that is run once per barrier point, after the last thread in the

party arrives, but before any threads are released. This barrier action is useful for updating shared-state before any of the parties
continue.

Overview of Java CyclicBarrier

« Implements another Java barrier public class CyclicBarrier {
synchronizer

« Enables barrier to be reset manually at any point
Class CyclicBarrier

java.lang.Object
java.util.concurrent.CyclicBarrier

public class CyclicBarrier
extends Object

A synchronization aid that allows a set of threads to all wait for each other to reach a common barrier point. CyclicBarriers are

useful in programs involving a fixed sized party of threads that must occasionally wait for each other. The barrier is called cyclic
because it can be re-used after the waiting threads are released.

A CyclicBarrier supports an optional Eunnab le command that is run once per barrier point, after the last thread in the

party arrives, but before any threads are released. This barrier action is useful for updating shared-state before any of the parties
continue.

In contrast, Java CountDownLatch does not enable the barrier to be reset!

Overview of Java CyclicBarrier

« Implements another Java barrier public class CyclicBarrier ({
synchronizer e

Does not implement
an interface

Class CyclicBarrier

java.lang.Object
java.util.concurrent.CyclicBarrier

public class CyclicBarrier
extends Object

A synchronization aid that allows a set of threads to all wait for each other to reach a common barrier point. CyclicBarriers are

useful in programs involving a fixed sized party of threads that must occasionally wait for each other. The barrier is called cyclic
because it can be re-used after the waiting threads are released.

A CyclicBarrier supports an optional Eunnab le command that is run once per barrier point, after the last thread in the

party arrives, but before any threads are released. This barrier action is useful for updating shared-state before any of the parties
continue.

Overview of Java CyclicBarrier

« Does not apply the Bridge pattern public class CyclicBarrier ({

Cyclic
Barrier SyRehronizer

operation(

g

'| imp.operationl

JA\

Sync NonFairSync

RefinedAbstractid

operationlmp() operationimp()

Overview of Java CyclicBarrier

« Does not apply the Bridge pattern public class CyclicBarrier ({

* Nor does it use the Abstract
QueuedSynchronizer framework

Cyclic
Barrier SyRkhronizer

operation(

g

'| imp.operationl

JA\

Sync NonFairSync

RefinedAbstractid

operationlmp() operationimp()

Unlike the Java ReentrantLock, ReentrantReadWriteLock,
Semaphore, ConditionObject, & CountDownLatch classes

Overview of Java CyclicBarrier

« Instead, it defines a # of fields public class CyclicBarrier ({

that implement a cyclic barrier private final ReentrantLock
lock = new ReentrantLock() ;

private final Condition trip
= lock.newCondition() ;

private final int parties;
private int count;

private final Runnable
barrierCommand;

See src/share/classes/java/util/concurrent/CyclicBarrier.java

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent/CyclicBarrier.java

Overview of Java CyclicBarrier

 Instead, it defines a # of fields public class CyclicBarrier {
that implement a cyclic barrier private final ReentrantLock

- lock = new ReentrantLock() ;
 Lock that protects critical ()

sections private final Condition trip

= lock.newCondition() ;
private final int parties;
private int count;

private final Runnable
barrierCommand;

12

Overview of Java CyclicBarrier

 Instead, it defines a # of fields public class CyclicBarrier {
that implement a cyclic barrier private final ReentrantLock
lock = new Reentrantlock() ;

private final Condition trip
« Condition to wait on until tripped = lock.newCondition() ;

private final int parties;
private int count;

private final Runnable
barrierCommand;

13

Overview of Java CyclicBarrier

 Instead, it defines a # of fields public class CyclicBarrier {

that implement a cyclic barrier private final ReentrantLock
lock = new ReentrantLock () ;

private final Condition trip
= lock.newCondition() ;

« The total # of parties

 This value is initially set by
the CyclicBarrier constructor private int count;

private final int parties;

private final Runnable
barrierCommand;

14

Overview of Java CyclicBarrier

 Instead, it defines a # of fields public class CyclicBarrier {

that implement a cyclic barrier private final ReentrantLock
lock = new ReentrantLock () ;

private final Condition trip
= lock.newCondition() ;

_ private final int parties;
« # of parties that haven't called

await() yet private int count;

« Initially set to total # of
parties & then decremented
each time await() is called

private final Runnable
barrierCommand;

15

Overview of Java CyclicBarrier

 Instead, it defines a # of fields public class CyclicBarrier {

that implement a cyclic barrier private final ReentrantLock
lock = new ReentrantLock() ;

private final Condition trip
= lock.newCondition() ;

private final int parties;

private int count;

 Barrier action (optional)
private final Runnable

- Called when barrier is barrierCommand ;
“tripped” after all parties
arrive

16

End of Java CyclicBarrier:
Structure & Functionality

17

