
Java CyclicBarrier:

Structure & Functionality

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 

Integrated Systems 

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

• Understand the structure & functionality 
of Java CountDownLatch

Learning Objectives in this Part of the Lesson



3

Overview of Java 
CyclicBarrier



4

• Implements another Java barrier 
synchronizer

Overview of Java CyclicBarrier

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CyclicBarrier.html

public class CyclicBarrier {

...

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CyclicBarrier.html


5

• Implements another Java barrier 
synchronizer

• Allows a set of threads to wait for each 
other to reach a common barrier point

• Threads are referred to as “parties”

Overview of Java CyclicBarrier
public class CyclicBarrier {

...

One human known use is an assembly line where fixed-sized groups of 
workers coordinate to build various parts of cars moving by in phases



6

• Implements another Java barrier 
synchronizer

• Allows a set of threads to wait for each 
other to reach a common barrier point

• Well-suited for fixed-size “cyclic”, “entry”, 
and/or “exit” barriers

Overview of Java CyclicBarrier
public class CyclicBarrier {

...



7

• Implements another Java barrier 
synchronizer

• Allows a set of threads to wait for each 
other to reach a common barrier point

• Well-suited for fixed-size “cyclic”, “entry”, 
and/or “exit” barriers

• Enables barrier to be reset manually at any point

Overview of Java CyclicBarrier
public class CyclicBarrier {

...

In contrast, Java CountDownLatch does not enable the barrier to be reset!



8

• Implements another Java barrier 
synchronizer

• Allows a set of threads to wait for each 
other to reach a common barrier point

• Well-suited for fixed-size “cyclic”, “entry”, 
and/or “exit” barriers

• Enables barrier to be reset manually at any point

Overview of Java CyclicBarrier
public class CyclicBarrier {

...

Does not implement 
an interface



9

• Does not apply the Bridge pattern

Overview of Java CyclicBarrier
public class CyclicBarrier {

...

Cyclic

Barrier

Sync NonFairSync

AbstractQueued

Synchronizer



10

• Does not apply the Bridge pattern

• Nor does it use the Abstract
QueuedSynchronizer framework

Overview of Java CyclicBarrier
public class CyclicBarrier {

...

Cyclic

Barrier

Sync NonFairSync

AbstractQueued

Synchronizer

Unlike the Java ReentrantLock, ReentrantReadWriteLock, 
Semaphore, ConditionObject, & CountDownLatch classes



11

• Instead, it defines a # of fields 
that implement a cyclic barrier

Overview of Java CyclicBarrier
public class CyclicBarrier {

private final ReentrantLock

lock = new ReentrantLock();

private final Condition trip 

= lock.newCondition();

private final int parties;

private int count;

private final Runnable 

barrierCommand;

...

See src/share/classes/java/util/concurrent/CyclicBarrier.java

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent/CyclicBarrier.java


12

• Instead, it defines a # of fields 
that implement a cyclic barrier

• Lock that protects critical 
sections

Overview of Java CyclicBarrier
public class CyclicBarrier {

private final ReentrantLock

lock = new ReentrantLock();

private final Condition trip 

= lock.newCondition();

private final int parties;

private int count;

private final Runnable 

barrierCommand;

...



13

• Instead, it defines a # of fields 
that implement a cyclic barrier

• Lock that protects critical 
sections

• Condition to wait on until tripped

Overview of Java CyclicBarrier
public class CyclicBarrier {

private final ReentrantLock

lock = new ReentrantLock();

private final Condition trip 

= lock.newCondition();

private final int parties;

private int count;

private final Runnable 

barrierCommand;

...



14

• Instead, it defines a # of fields 
that implement a cyclic barrier

• Lock that protects critical 
sections

• Condition to wait on until tripped

• The total # of parties

• This value is initially set by 
the CyclicBarrier constructor

Overview of Java CyclicBarrier
public class CyclicBarrier {

private final ReentrantLock

lock = new ReentrantLock();

private final Condition trip 

= lock.newCondition();

private final int parties;

private int count;

private final Runnable 

barrierCommand;

...



15

• Instead, it defines a # of fields 
that implement a cyclic barrier

• Lock that protects critical 
sections

• Condition to wait on until tripped

• The total # of parties

• # of parties that haven’t called 
await() yet

• Initially set to total # of 
parties & then decremented 
each time await() is called

Overview of Java CyclicBarrier
public class CyclicBarrier {

private final ReentrantLock

lock = new ReentrantLock();

private final Condition trip 

= lock.newCondition();

private final int parties;

private int count;

private final Runnable 

barrierCommand;

...



16

• Instead, it defines a # of fields 
that implement a cyclic barrier

• Lock that protects critical 
sections

• Condition to wait on until tripped

• The total # of parties

• # of parties that haven’t called 
await() yet

• Barrier action (optional)

• Called when barrier is
“tripped” after all parties
arrive 

Overview of Java CyclicBarrier
public class CyclicBarrier {

private final ReentrantLock

lock = new ReentrantLock();

private final Condition trip 

= lock.newCondition();

private final int parties;

private int count;

private final Runnable 

barrierCommand;

...



17

End of Java CyclicBarrier: 
Structure & Functionality


