Java GountDownlatch:
Example Application

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderbilt University
Nashuille, Tennessee, USA



mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Know how to program with Java CountDownLatch in practice

class GCDCountDownlLatchWorker implements Runnable ({
private final CountDownlLatch mEntryBarrier;
private final CountDownLatch mExitBarrier;

GCDCountDownLatchWorker (CountDownLatch entryBarrier,
CountDownlLatch exitBarrier, ...) {
mEntryBarrier = entryBarrier; mExitBarrier = exitBarrier;

}

public void run() {

mEntryBarrier.await() ;
runTest () ;
mExitBarrier.countDown () ;




Overview of the GCD App




Overview of the GCD App

 This Android app uses two CountDownLatch objects
to coordinate the concurrent benchmarking of four
Greatest Common Divisor (GCD) algorithms

00:07:05

10000000

See github.com/douglascraigschmidt/POSA/tree/master/ex/M3/GCD/CountDownLatch



https://github.com/douglascraigschmidt/POSA/tree/master/ex/M3/GCD/CountDownLatch

Overview of the GCD App

 This Android app uses two CountDownLatch objects
to coordinate the concurrent benchmarking of four
Greatest Common Divisor (GCD) algorithms

« GCD computes the largest positive integer
that is a divisor of two numbers

« e.g,theGCDof 8& 12 =4

10000000

See en.wikipedia.org/wiki/Greatest common divisor



https://en.wikipedia.org/wiki/Greatest_common_divisor

Overview of the GCD App

 This Android app uses two CountDownLatch objects
to coordinate the concurrent benchmarking of four
Greatest Common Divisor (GCD) algorithms

» Four GCD algorithms are tested

10000000




Overview of the GCD App

 This Android app uses two CountDownLatch objects
to coordinate the concurrent benchmarking of four
Greatest Common Divisor (GCD) algorithms

» Four GCD algorithms are tested
« The gcd() method defined by Biglnteger

10000000

See docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html#acd



https://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html#gcd-java.math.BigInteger-

Overview of the GCD App

 This Android app uses two CountDownLatch objects
to coordinate the concurrent benchmarking of four
Greatest Common Divisor (GCD) algorithms

00:07:05

» Four GCD algorithms are tested

 An iterative Euclid algorithm

10000000

See en.wikipedia.org/wiki/Euclidean algorithm



https://en.wikipedia.org/wiki/Euclidean_algorithm

Overview of the GCD App

 This Android app uses two CountDownLatch objects
to coordinate the concurrent benchmarking of four
Greatest Common Divisor (GCD) algorithms

» Four GCD algorithms are tested

* A recursive Euclid algorithm

10000000

See codedost.com/java/methods-and-recursion-in-java/java-
program-to-find-gcd-hcf-using-euclidean-algorithm-using-recursion



https://codedost.com/java/methods-and-recursion-in-java/java-program-to-find-gcd-hcf-using-euclidean-algorithm-using-recursion/

Overview of the GCD App

This Android app uses two CountDownLatch objects
to coordinate the concurrent benchmarking of four
Greatest Common Divisor (GCD) algorithms

» Four GCD algorithms are tested

« A complex GCD algorithm that uses
binary arithmetic

10000000

See en.wikipedia.org/wiki/Binary GCD algorithm



https://en.wikipedia.org/wiki/Binary_GCD_algorithm

Overview of the GCD App

 This Android app uses two CountDownLatch objects
to coordinate the concurrent benchmarking of four
Greatest Common Divisor (GCD) algorithms

00:07:05

» Four GCD algorithms are tested
« The gcd() method defined bv Ria™ ser
 An iterative Eucli<

4 XN “}B\(\‘

However, the details of these algorithms are not important for our discussion




GCDCountDownLatchTest
Class Walkthrough

12



GCDCountDownLatchTest Class Walkthrough

« Create worker threads that use entry & exit barrier CountDownLatch objects

class GCDCountDownLatchTest ({
@Test public void testGCDCountDownLatchTester () {

List<GCDTuple> gcdTests = makeGCDTuples() ;

CountDownLatch entryBarrier = new CountDownLatch(1l) ;
CountDownlLatch exitBarrier =
new CountDownLatch (gcdTests.size());

gcdTests. forEach (gcdTest -> new Thread
(new GCDCountDownLatchWorker
(entryBarrier, exitBarrier, gcdTuple, this)).start()):

System.out.println("Starting tests");
entryBarrier.countDown () ;
System.out.println("Waiting for results");
exitBarrier.await() ;
System.out.println("All tests done");

See GCD/CountDownlLatch/app/src/test/java/edu/
vandy/qgcdtesttask/GCDCyclicBarrierTest.java



https://github.com/douglascraigschmidt/POSA/blob/master/ex/M3/GCD/CountDownLatch/app/src/test/java/edu/vandy/gcdtesttask/GCDCyclicBarrierTest.java

GCDCountDownLatchTest Class Walkthrough

« Create worker threads that use entry & exit barrier CountDownLatch objects

class GCDCountDownLatchTest ({
@Test public void testGCDCountDownLatchTester () { ﬁ

LJ.st<GCDTuple> gcdTests = makeGCDTuples(); Entry pointinto test

CountDownLatch entryBarrier = new CountDownLatch(1l) ;
CountDownlLatch exitBarrier =
new CountDownLatch (gcdTests.size());

gcdTests. forEach (gcdTest -> new Thread
(new GCDCountDownLatchWorker
(entryBarrier, exitBarrier, gcdTuple, this)).start()):

System.out.println("Starting tests");
entryBarrier.countDown () ;
System.out.println("Waiting for results");
exitBarrier.await() ;
System.out.println("All tests done");

14



GCDCountDownLatchTest Class Walkthrough

« Create worker threads that use entry & exit barrier CountDownLatch objects

class GCDCountDownLatchTest ( Initialize all the
@Test public void testGCDCountDownLatchTester () {GCD algorithms

List<GCDTuple> gcdTests = makeGCDTuples() ; J

CountDownLatch entryBarrier = new CountDownLatch(1l) ;
CountDownlLatch exitBarrier =
new CountDownLatch (gcdTests.size());

gcdTests. forEach (gcdTest -> new Thread
(new GCDCountDownLatchWorker
(entryBarrier, exitBarrier, gcdTuple, this)).start()):

System.out.println("Starting tests");
entryBarrier.countDown () ;
System.out.println("Waiting for results");
exitBarrier.await() ;
System.out.println("All tests done");

15



GCDCountDownLatchTest Class Walkthrough

« Create worker threads that use entry & exit barrier CountDownLatch objects

class GCDCountDownLatchTest ({
@Test public void testGCDCountDownLatchTester () {

Create the

List<GCDTuple> gcdTests = makeGCDTuples () ; .
P J P () entry barrier

CountDownLatch entryBarrier = new CountDownLatch(1l) ;
CountDownlLatch exitBarrier =
new CountDownLatch (gcdTests.size());

gcdTests. forEach (gcdTest -> new Thread
(new GCDCountDownLatchWorker
(entryBarrier, exitBarrier, gcdTuple, this)).start()):

System.out.println("Starting tests");
entryBarrier.countDown () ;
System.out.println("Waiting for results");
exitBarrier.await() ;
System.out.println("All tests done");

16



GCDCountDownLatchTest Class Walkthrough

« Create worker threads that use entry & exit barrier CountDownLatch objects

class GCDCountDownLatchTest ({
@Test public void testGCDCountDownLatchTester () {

List<GCDTuple> gcdTests = makeGCDTuples() ;

CountDownLatch entryBarrier = new CountDownLatch(1l) ;
CountDownlLatch exitBarrier =

new CountDownLatch (gcdTests.size()); Create the

exit barrier

gcdTests. forEach (gcdTest -> new Thread
(new GCDCountDownLatchWorker
(entryBarrier, exitBarrier, gcdTuple, this)).start()):

System.out.println("Starting tests");
entryBarrier.countDown () ;
System.out.println("Waiting for results");
exitBarrier.await() ;
System.out.println("All tests done");

17



GCDCountDownLatchTest Class Walkthrough

« Create worker threads that use entry & exit barrier CountDownLatch objects

class GCDCountDownLatchTest ({
@Test public void testGCDCountDownLatchTester () {

List<GCDTuple> gcdTests = makeGCDTuples() ;

CountDownLatch entryBarrier = new CountDownLatch(1l) ;
CountDownlLatch exitBarrier = Iterate through all
new CountDownLatch (gcdTests.size()); the GCD algorithms

gcdTests . forEach (gcdTest -> new Thread J
(new GCDCountDownLatchWorker
(entryBarrier, exitBarrier, gcdTuple, this)).start()):

System.out.println("Starting tests");
entryBarrier.countDown () ;
System.out.println("Waiting for results");
exitBarrier.await() ;
System.out.println("All tests done");

18



GCDCountDownLatchTest Class Walkthrough

« Create worker threads that use entry & exit barrier CountDownLatch objects

class GCDCountDownLatchTest ({
@Test public void testGCDCountDownLatchTester () {

List<GCDTuple> gcdTests = makeGCDTuples() ;

CountDownLatch entryBarrier = new CountDownLatch(1l) ;
CountDownlLatch exitBarrier =

new CountDownLatch (gcdTests.size()); Create/start worker

w/barrier
gcdTests. forEach (gcdTest -> new Thread threads w/barriers

(new GCDCountDownLatchWorker
(entryBarrier, exitBarrier, gcdTuple, this)) .start());

System.out.println("Starting tests");
entryBarrier.countDown () ;
System.out.println("Waiting for results");
exitBarrier.await() ;
System.out.println("All tests done");

19



GCDCountDownLatchTest Class Walkthrough

« Create worker threads that use entry & exit barrier CountDownLatch objects

class GCDCountDownLatchTest ({
@Test public void testGCDCountDownLatchTester () {

List<GCDTuple> gcdTests = makeGCDTuples() ;

CountDownLatch entryBarrier = new CountDownLatch(1l) ;
CountDownlLatch exitBarrier =
new CountDownLatch (gcdTests.size());

gcdTests. forEach (gcdTest -> new Thread
(new GCDCountDownLatchWorker
(entryBarrier, exitBarrier, gcdTuple, this)).start()):

The worker threads

System.out.println("Starting tests"); don't start just yet

entryBarrier.countDown () ;
System.out.println("Waiting for results");
exitBarrier.await() ;
System.out.println("All tests done");

20



GCDCountDownLatchTest Class Walkthrough

« Create worker threads that use entry & exit barrier CountDownLatch objects

class GCDCountDownLatchTest ({
@Test public void testGCDCountDownLatchTester () {

List<GCDTuple> gcdTests = makeGCDTuples() ;

CountDownLatch entryBarrier = new CountDownLatch(1l) ;
CountDownlLatch exitBarrier =
new CountDownLatch (gcdTests.size());

gcdTests. forEach (gcdTest -> new Thread
(new GCDCountDownLatchWorker
(entryBarrier, exitBarrier, gcdTuple, this)).start()):

System.out.println("Starting tests");
entryBarrier.countDown () ; Let all worker threads proceed
System.out.println("Waiting for results");
exitBarrier.await() ;

System.out.println("All tests done");

The countDown() method is a “latch” that let’s all the worker threads start
running, but it doesn’t ensure all the worker threads start at the same time..




GCDCountDownLatchTest Class Walkthrough

« Create worker threads that use entry & exit barrier CountDownLatch objects

class GCDCountDownLatchTest ({
@Test public void testGCDCountDownLatchTester () {

List<GCDTuple> gcdTests = makeGCDTuples() ;

CountDownLatch entryBarrier = new CountDownLatch(1l) ;
CountDownlLatch exitBarrier =
new CountDownLatch (gcdTests.size());

gcdTests. forEach (gcdTest -> new Thread
(new GCDCountDownLatchWorker
(entryBarrier, exitBarrier, gcdTuple, this)).start()):

System.out.println("Starting tests");
entryBarrier.countDown () ;

System.out.println("Waiting for results");
exitBarrier.await(); @S Wait for all to finish (exit barrier)
System.out.println("All tests done");

After await() returns for a CountDownlLatch it can’t be reused/
reset without creating a new CountDownLatch instance




GCDCountDownLatchWorker
Class Walkthrough

23



GCDCountDownLatchWorker Class Walkthrough

 This class applies two entry & exit barrier CountDownLatch objects to
coordinate the benchmarking of a given GCD algorithm implementation

class GCDCountDownLatchWorker implements Runnable {
private final CountDownLatch mEntryBarrier;

private final CountDownlLatch mExitBarrier; Deﬁn_e a worker that
runs in a thread

GCDCountDownLatchWorker (CountDownLatch entryBarrier,
CountDownlLatch exitBarrier, ...) {
mEntryBarrier = entryBarrier; mExitBarrier = exitBarrier;

}

public void run() {

mEntryBarrier.await() ;
runTest () ;
mExitBarrier.countDown () ;

See GCD/CountDownlLatch/app/src/main/java/edu/vandy/
gcdtesttask/presenter/GCDCountDownlLatchWorker.java



https://github.com/douglascraigschmidt/POSA/blob/master/ex/M3/GCD/CountDownLatch/app/src/main/java/edu/vandy/gcdtesttask/presenter/GCDCountDownLatchWorker.java

GCDCountDownLatchWorker Class Walkthrough

 This class applies two entry & exit barrier CountDownLatch objects to
coordinate the benchmarking of a given GCD algorithm implementation

class GCDCountDownLatchWorker implements Runnable {
private final CountDownLatch mEntryBarrier;
private final CountDownLatch mExitBarrier;

GCDCountDownLatchWorker (CountDownLatch entryBarrier,
CountDownlLatch exitBarrier, ...) {
mEntryBarrier = entryBarrier; mExitBarrier = exitBarrier;

} L Initialize barrier fields et al.
public void run() {
mEntryBarrier.await() ;

runTest () ;
mExitBarrier.countDown () ;

25



GCDCountDownLatchWorker Class Walkthrough

 This class applies two entry & exit barrier CountDownLatch objects to
coordinate the benchmarking of a given GCD algorithm implementation

class GCDCountDownLatchWorker implements Runnable {
private final CountDownLatch mEntryBarrier;
private final CountDownLatch mExitBarrier;

GCDCountDownLatchWorker (CountDownLatch entryBarrier,
CountDownlLatch exitBarrier, ...) {
mEntryBarrier = entryBarrier; mExitBarrier = exitBarrier;

This hook method executes
‘ after the thread is started

public void run() {

}

mEntryBarrier.await() ;
runTest () ;
mExitBarrier.countDown () ;

26



GCDCountDownLatchWorker Class Walkthrough

 This class applies two entry & exit barrier CountDownLatch objects to
coordinate the benchmarking of a given GCD algorithm implementation

class GCDCountDownLatchWorker implements Runnable {
private final CountDownLatch mEntryBarrier;
private final CountDownLatch mExitBarrier;

GCDCountDownLatchWorker (CountDownLatch entryBarrier,
CountDownlLatch exitBarrier, ...) {
mEntryBarrier = entryBarrier; mExitBarrier = exitBarrier;

} This entry barrier causes the worker thread

to wait until main thread is ready, though

public void run() { -
worker threads may not start simultaneously

mEntryBarrier.await() ;
runTest () ;
mExitBarrier.countDown () ;

See the upcoming lesson on “Java CyclicBarrier” for a solution to this problem




GCDCountDownLatchWorker Class Walkthrough

 This class applies two entry & exit barrier CountDownLatch objects to
coordinate the benchmarking of a given GCD algorithm implementation

class GCDCountDownLatchWorker implements Runnable {
private final CountDownLatch mEntryBarrier;
private final CountDownLatch mExitBarrier;

GCDCountDownLatchWorker (CountDownLatch entryBarrier,
CountDownlLatch exitBarrier, ...) {
mEntryBarrier = entryBarrier; mExitBarrier = exitBarrier;

} - #
pubtc vosd xun0) porlait

mEntryBarrier.await() ;

runTest () ; - Run the GCD algorithm associated with this object
mExitBarrier.countDown () ;

28



GCDCountDownLatchWorker Class Walkthrough

 This class applies two entry & exit barrier CountDownLatch objects to
coordinate the benchmarking of a given GCD algorithm implementation

class GCDCountDownLatchWorker implements Runnable {
private final CountDownLatch mEntryBarrier;
private final CountDownLatch mExitBarrier;

GCDCountDownLatchWorker (CountDownLatch entryBarrier,
CountDownlLatch exitBarrier, ...) {
mEntryBarrier = entryBarrier; mExitBarrier = exitBarrier;

}

public void run() {

mEntryBarrier.await() ;

runTest () ; Decrement the count, which

mExitBarrier.countDown () ; - lets the main thread proceed
when the count reaches 0

29



End of CountDownLatch:
Example Application

30



