Java CountDownlatch:
Structure & Functionality

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderbilt University
Nashuille, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand the structure & functionality of Java CountDownLatch

CountDown imp AbstractQueued
Latch ~ > Synchronizer
operation() ¢ operationlmp()
: LN
""" '| imp.operationimp();)\
Sync NonFairSync

RefinedAbstraction

operationimp() operationlmp()

Overview of Java
CountDownLatch

Overview of Java CountDownlLatch

« Implements one (of several) Java public class CountDownLatch {
barrier synchronizers

Class CountDownLatch

java.lang.Object
java.util.concurrent.CountDownLatch

public class CountDownLatch
extends Object

A synchronization aid that allows one or more threads to wait until a set of operations being performed in other threads completes.

A CountDownLatch is initialized with a given count. The awa i t methods block until the current count reaches zero due to
invocations of the countDown () method, after which all waiting threads are released and any subsequent invocations of
awalt return immediately. This is a one-shot phenomenon -- the count cannot be reset. If you need a version that resets the
count, considerusinga CyclicBarrier.

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ CountDownLatch.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountDownLatch.html

Overview of Java CountDownlLatch

Implements one (of several) Java public class CountDownLatch ({
barrier synchronizers -

« Allows one or more threads to wait for
the completion of a set of operations
being performed in other threads

Class CountDownLatch

java.lang.Object
java.util.concurrent.CountDownLatch

public class CountDownLatch
extends Object

A synchronization aid that allows one or more threads to wait until a set of operations being performed in other threads completes.

A CountDownLatch is initialized with a given count. The awa i t methods block until the current count reaches zero due to
invocations of the countDown () method, after which all waiting threads are released and any subsequent invocations of
awalt return immediately. This is a one-shot phenomenon -- the count cannot be reset. If you need a version that resets the
count, considerusinga CyclicBarrier.

One human known use is the starting gate at a horse race, which
ensures all the horses are in position before the race begins

Overview of Java CountDownlLatch

 Implements one (of several) Java public class CountDownlatch {
barrier synchronizers e

- Well-suited for fixed-size, one-shot DON'T BE
“entry” & “exit” barriers SAD

Class CountDownLatch COS

java.lang.Object 2 OU I OF 3
. ; :
java.util.concurrent.CountDownLatch a IN T B a D

public class CountDownLatch
extends Object

A synchronization aid that allows one or more threads to wait until a set of operations being performed in other threads completes.

A CountDownLatch is initialized with a given count. The awa i t methods block until the current count reaches zero due to
invocations of the countDown () method, after which all waiting threads are released and any subsequent invocations of
awalt return immediately. This is a one-shot phenomenon -- the count cannot be reset. If you need a version that resets the
count, considerusinga CyclicBarrier.

CountDownLatch is not designed for use as “cyclic” barriers

Overview of Java CountDownlLatch

Implements one (of several) Java public class CountDownLatch {
barrier synchronizers e

Does not implement an interface

Class CountDownLatch

java.lang.Object
java.util.concurrent.CountDownLatch

public class CountDownLatch
extends Object

A synchronization aid that allows one or more threads to wait until a set of operations being performed in other threads completes.

A CountDownLatch is initialized with a given count. The awa i t methods block until the current count reaches zero due to
invocations of the countDown () method, after which all waiting threads are released and any subsequent invocations of
awalt return immediately. This is a one-shot phenomenon -- the count cannot be reset. If you need a version that resets the
count, considerusinga CyclicBarrier.

Overview of Java CountDownlLatch

« Applies a variant of Bridge pattern public class CountDownLlatch ({

Decouple the abstraction from the implementation
hierarchy so the two can vary independently

CountDown imp AbstractQueued
Latch I~ ™ Synchronizer
operation() ¢ operationlmp()
: LN
""" '| imp.operationimp();)\
Sync

RefinedAbstraction

operationlmp()

See en.wikipedia.org/wiki/Bridge pattern

http://en.wikipedia.org/wiki/Bridge_pattern

Overview of Java CountDownlLatch

« Applies a variant of Bridge pattern public class CountDownLlatch ({

 Locking handled by Sync

. _ /** Performs sync mechanics */
implementor hierarchy

private final Sync sync;

Overview of Java CountDownlLatch

« Applies a variant of Bridge pattern public class CountDownLlatch ({

/** Performs sync mechanics */
private final Sync sync;

« Inherits functionality from the

AbstractQueuedSynchronizer [**

(AQS) class * Synchronization control or
* CountDownLatch.
*/

private static final class
Sync extends
AbstractQueuedSynchronizer ({

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/locks/AbstractQueuedSynchronizer.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/AbstractQueuedSynchronizer.html

Overview of Java CountDownlLatch

« Applies a variant of Bridge pattern public class CountDownLlatch ({

/** Performs sync mechanics */
private final Sync sync;

« Inherits functionality from the

AbstractQueuedSynchronizer [**
(AQS) class * Synchronization control or
: - * CountDownLatch.
« However, it doesn’t implement x/
“fair” vs. “non-fair” semantics private static final class

Sync extends
AbstractQueuedSynchronizer ({

See earlier lessons on “Java ReentrantLocKk”, * Java
Semaphore’, & " Java ReentrantReadWriteLock”

Overview of Java CountDownlLatch

« Applies a variant of Bridge pattern public class CountDownLlatch ({

/** Performs sync mechanics */
private final Sync sync;
« Inherits functionality from the

AbstractQueuedSynchronizer [**

(AQS) class * Synchronization control or
* CountDownLatch.
*/

private static final class

» Instead, it uses the AQS state to Sync extends
atomically represent the “count” AbstractQueuedSynchronizer {

See gee.cs.oswedgo.edu/dl/papers/aags.pdf

http://gee.cs.oswego.edu/dl/papers/aqs.pdf

End of Java CountDownLatch:
Structure & Functionality

13

