
Background on Concurrency &

Parallelism in Java (Part 2)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson

Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization Packages

Ja
va

/J
N

I
C
+

+
/C

C
JAVA HISTORY

• Understand the meaning of the
terms concurrency & parallelism

• Be aware of the history of Java
concurrency & parallelism

3

Learning Objectives in this Part of the Lesson

Hopefully, you’ll already know some of this!!!

• Understand the meaning of the
terms concurrency & parallelism

• Be aware of the history of Java
concurrency & parallelism Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization Packages

Ja
va

/J
N

I
C
+

+
/C

C

4

Learning Objectives in this Part of the Lesson
• Understand the meaning of the

terms concurrency & parallelism

• Be aware of the history of Java
concurrency & parallelism

• Know which Java mechanism(s)
to understand & apply

5

A Brief History of
Concurrency &

Parallelism in Java

6

A Brief History of Concurrency & Parallelism in Java
• Foundational concurrency support

Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization Packages

Ja
va

/J
N

I
C
+

+
/C

C

e.g., Java threads &
built-in monitor objects

available in Java 1.0

7

A Brief History of Concurrency & Parallelism in Java
• Foundational concurrency support

• Focus on basic multi-threading
& synchronization primitives

See docs.oracle.com/javase/tutorial/essential/concurrency

https://docs.oracle.com/javase/tutorial/essential/concurrency

8

A Brief History of Concurrency & Parallelism in Java
• Foundational concurrency support

• Focus on basic multi-threading
& synchronization primitives

See github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

SimpleBlockingBoundedQueue<Integer>

simpleQueue = new

SimpleBlockingBoundedQueue<>();

Thread[] threads = new Thread[] {

new Thread(new Producer<>

(simpleQueue)),

new Thread(new Consumer<>

(simpleQueue))

};

for (Thread thread : threads)

thread.start();

for (Thread thread : threads)

thread.join();

Allow multiple threads
to communicate via a

bounded buffer

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

9

A Brief History of Concurrency & Parallelism in Java
• Foundational concurrency support

• Focus on basic multi-threading
& synchronization primitives

See github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

Start & join these
multiple threads

SimpleBlockingBoundedQueue<Integer>

simpleQueue = new

SimpleBlockingBoundedQueue<>();

Thread[] threads = new Thread[] {

new Thread(new Producer<>

(simpleQueue)),

new Thread(new Consumer<>

(simpleQueue))

};

for (Thread thread : threads)

thread.start();

for (Thread thread : threads)

thread.join();

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

10

A Brief History of Concurrency & Parallelism in Java
• Foundational concurrency support

• Focus on basic multi-threading
& synchronization primitives

See github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

class SimpleBlockingBoundedQueue

<E> {

public E take() ...{

synchronized(this) {

while (mList.isEmpty())

wait();

notifyAll();

return mList.poll();

}

}

Built-in monitor object
mutual exclusion &

coordination primitives

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

11

A Brief History of Concurrency & Parallelism in Java
• Foundational concurrency support

• Focus on basic multi-threading
& synchronization primitives

• Efficient, but low-level & very
limited in capabilities

12

A Brief History of Concurrency & Parallelism in Java
• Foundational concurrency support

• Focus on basic multi-threading
& synchronization primitives

• Efficient, but low-level & very
limited in capabilities

• Many accidental complexities

See en.wikipedia.org/wiki/No_Silver_Bullet

Accidental complexities arise
from limitations with software
techniques, tools, & methods

https://en.wikipedia.org/wiki/No_Silver_Bullet

13

A Brief History of Concurrency & Parallelism in Java
• Advanced concurrency support

Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization Packages

Ja
va

/J
N

I
C
+

+
/C

C

e.g., Java executor framework,
synchronizers, blocking queues,
atomics, & concurrent collections

available in Java 1.5+

14

ThreadPoolExecutor

3.take()

4.run()

A Brief History of Concurrency & Parallelism in Java
• Advanced concurrency support

• Focus on course-grained “task
parallelism” whose computations
can run concurrently

See en.wikipedia.org/wiki/Task_parallelism

WorkerThreads

execute() run()

runnable

runnable
Future

Future

Future

Future

Completion

Queue

runnable

WorkQueue

2.offer()

ExecutorCompletionService

submit()

take()

5.add()

1.submit(task)

6.take()

https://en.wikipedia.org/wiki/Task_parallelism

15

A Brief History of Concurrency & Parallelism in Java

See github.com/douglascraigschmidt/LiveLessons/tree/master/PalantiriManagerApplication

Create a fixed-sized thread pool
& also coordinate the starting &
stopping of multiple tasks that

acquire/release shared resources

• Advanced concurrency support

• Focus on course-grained “task
parallelism” whose computations
can run concurrently

ExecutorService executor =

Executors.newFixedThreadPool

(numOfBeings,

mThreadFactory);

...

CyclicBarrier entryBarrier =

new CyclicBarrier(numOfBeings+1);

CountDownLatch exitBarrier =

new CountDownLatch(numOfBeings);

for (int i=0; i < beingCount; ++i)

executor.execute

(makeBeingRunnable(i,

entryBarrier,

exitBarrier));

https://github.com/douglascraigschmidt/LiveLessons/tree/master/PalantiriManagerApplication

16

A Brief History of Concurrency & Parallelism in Java
• Advanced concurrency support

• Focus on course-grained “task
parallelism” whose computations
can run concurrently

• Feature-rich & optimized, but also
tedious & error-prone to program

17

A Brief History of Concurrency & Parallelism in Java
• Foundational parallelism support

Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization Packages

Ja
va

/J
N

I
C
+

+
/C

C

e.g., Java fork-join pool
available in Java 1.7

18

A Brief History of Concurrency & Parallelism in Java
• Foundational parallelism support

• Focus on data parallelism
that runs the same task on
different data elements

See en.wikipedia.org/wiki/Data_parallelism

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2

fork()

Task

fork() fork()

https://en.wikipedia.org/wiki/Data_parallelism

19See github.com/douglascraigschmidt/LiveLessons/tree/master/SearchForkJoin

A Brief History of Concurrency & Parallelism in Java
• Foundational parallelism support

• Focus on data parallelism
that runs the same task on
different data elements

List<List<SearchResults>>

listOfListOfSearchResults =

ForkJoinPool

.commonPool()

.invoke(new

SearchWithForkJoinTask

(inputList,

mPhrasesToFind, ...));

Use a common fork-join pool
to search input strings to
locate phrases that match

45,000+ phrases

Search Phrases

Input Strings to Search

…

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SearchForkJoin

20

A Brief History of Concurrency & Parallelism in Java
• Foundational parallelism support

• Focus on data parallelism
that runs the same task on
different data elements

• Powerful & scalable, but
tedious to program directly

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2

fork()

Task

fork() fork()

21

A Brief History of Concurrency & Parallelism in Java
• Advanced parallelism support

Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization Packages

Ja
va

/J
N

I
C
+

+
/C

C

e.g., Java parallel streams
& completable futures
available in Java 1.8

22

A Brief History of Concurrency & Parallelism in Java

filter(not(this::urlCached))

collect(toList())

Parallel Streams

…

map(this::downloadImage)

flatMap(this::applyFilters)

• Advanced parallelism support

• Focus on functional programming
for data parallelism

See en.wikipedia.org/wiki/Data_parallelism

https://en.wikipedia.org/wiki/Data_parallelism

23

A Brief History of Concurrency & Parallelism in Java
• Advanced parallelism support

• Focus on functional programming
for data parallelism & reactive
asynchrony

/page\ =

supplyAsync

(getStartPage())

/imgNum2\ = /page\

.thenComposeAsync

(crawlHyperLinks

(page))

/imgNum1\ = /page\

.thenApplyAsync

(countImages(page))

.thenApply(List::size)

/imgNum1\.thenCombine(/imgNum2\,

(imgNum1, imgNum2) ->

Integer::sum)

See gist.github.com/staltz/868e7e9bc2a7b8c1f754

https://gist.github.com/staltz/868e7e9bc2a7b8c1f754

24

A Brief History of Concurrency & Parallelism in Java
• Advanced parallelism support

• Focus on functional programming
for data parallelism & reactive
asynchrony

See github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

Synchronously download images that
aren’t already cached from a list of URLs

& process/store the images in parallel

List<Image> images =

urls

.parallelStream()

.filter(not(this::urlCached))

.map(this::downloadImage)

.flatMap(this::applyFilters)

.collect(toList());

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

25

A Brief History of Concurrency & Parallelism in Java
• Advanced parallelism support

• Focus on functional programming
for data parallelism & reactive
asynchrony

See github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

CompletableFuture<Stream<Image>>

resultsFuture = urls

.stream()

.map(this::checkUrlCachedAsync)

.map(this::downloadImageAsync)

.flatMap(this::applyFiltersAsync)

.collect(toFuture())

.thenApply(stream ->

log(stream.flatMap

(Optional::stream),

urls.size()))

.join();

Asynchronously download images that
aren’t already cached from a list of URLs

& process/store the images in parallel

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

26

A Brief History of Concurrency & Parallelism in Java
• Advanced parallelism support

• Focus on functional programming
for data parallelism & reactive
asynchrony

• Strikes an effective balance between
productivity & performance

27

A Brief History of Concurrency & Parallelism in Java
• Advanced parallelism support

• Focus on functional programming
for data parallelism & reactive
asynchrony

• Strikes an effective balance between
productivity & performance

• However, may be overly prescriptive

28

Which Java Mechanism(s)
to Understand & Apply

29

Which Java Mechanism(s) to Understand & Apply
• Java’s concurrency & parallelism

mechanisms span multiple layers
in the software stack

Additional Application Frameworks

Operating System Kernel

Applications

System Libraries

Execution Environment (JVM, Dalvik/ART, etc.)

Ja
va

/J
N

I
C
+

+
/C

C

Concurrency/Parallelism Frameworks

Java Threads & Synchronizers

30

Which Java Mechanism(s) to Understand & Apply
• Java’s concurrency & parallelism

mechanisms span multiple layers
in the software stack

• Choosing best mechanism(s)
depend on various factors

Additional Application Frameworks

Operating System Kernel

Applications

System Libraries

Execution Environment (JVM, Dalvik/ART, etc.)

Ja
va

/J
N

I
C
+

+
/C

C

Concurrency/Parallelism Frameworks

Java Threads & Synchronizers

31

Additional Application Frameworks

Operating System Kernel

Applications

System Libraries

Execution Environment (JVM, Dalvik/ART, etc.)

Ja
va

/J
N

I
C
+

+
/C

C

Concurrency/Parallelism Frameworks

Java Threads & Synchronizers

Which Java Mechanism(s) to Understand & Apply
• Developers of low-level classes &

performance-sensitive apps may
prefer shared object mechanisms

e.g., java.util.concurrent as per www.youtube.com/watch?v=sq0MX3fHkro

http://www.youtube.com/watch?v=sq0MX3fHkro

32

Additional Application Frameworks

Operating System Kernel

Applications

System Libraries

Execution Environment (JVM, Dalvik/ART, etc.)

Ja
va

/J
N

I
C
+

+
/C

C

Concurrency/Parallelism Frameworks

Java Threads & Synchronizers

Which Java Mechanism(s) to Understand & Apply
• Developers of low-level classes &

performance-sensitive apps may
prefer shared object mechanisms

• Pros: Efficient & lightweight

• Cons: Tedious & error-prone

33

Additional Application Frameworks

Operating System Kernel

Applications

System Libraries

Execution Environment (JVM, Dalvik/ART, etc.)

Ja
va

/J
N

I
C
+

+
/C

C

Concurrency/Parallelism Frameworks

Java Threads & Synchronizers

Which Java Mechanism(s) to Understand & Apply
• Framework developers may want

to use the Java message passing
mechanisms

e.g., Android AsyncTask/HaMeR frameworks or Java ExecutorCompetionService

34

Additional Application Frameworks

Operating System Kernel

Applications

System Libraries

Execution Environment (JVM, Dalvik/ART, etc.)

Ja
va

/J
N

I
C
+

+
/C

C

Concurrency/Parallelism Frameworks

Java Threads & Synchronizers

Which Java Mechanism(s) to Understand & Apply
• Framework developers may want

to use the Java message passing
mechanisms

• Pros: Flexible & decoupled

• Cons: Time/space overhead

35

Additional Application Frameworks

Operating System Kernel

Applications

System Libraries

Execution Environment (JVM, Dalvik/ART, etc.)

Ja
va

/J
N

I
C
+

+
/C

C

Concurrency/Parallelism Frameworks

Java Threads & Synchronizers

Which Java Mechanism(s) to Understand & Apply

e.g., Java 8 parallel streams & completable futures, RxJava, etc.

• Mobile app developers may want to
program w/higher-level frameworks

36

Additional Application Frameworks

Operating System Kernel

Applications

System Libraries

Execution Environment (JVM, Dalvik/ART, etc.)

Ja
va

/J
N

I
C
+

+
/C

C

Concurrency/Parallelism Frameworks

Java Threads & Synchronizers

Which Java Mechanism(s) to Understand & Apply
• Mobile app developers may want to

program w/higher-level frameworks

• Pros: Productivity & robustness

• Cons: Time/space overhead
& overly prescriptive

37

Additional Application Frameworks

Operating System Kernel

Applications

System Libraries

Execution Environment (JVM, Dalvik/ART, etc.)

Ja
va

/J
N

I
C
+

+
/C

C

Concurrency/Parallelism Frameworks

Java Threads & Synchronizers

Which Java Mechanism(s) to Understand & Apply

“Full stack” developers should understand concepts & mechanisms at each layer

38

End of Background on
Java Concurrency &
Parallelism (Part 2)

