Background on Goncurrency &

Parallelism in Java (Part 2)

Douglas G. Schmidt
id.schmidt@uanderhiit.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashuille, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

Applications
- Be aware of the history of Java = B
concurrency & paraIIeIism % Additional Frameworks & Languages
>
©
7 7 - Threading & Synchronization Packages
] g | Java Execution Environment (e.g., JVM)
+
+
O

System Libraries

JAVA HISTORY

C

Operating System Kernel

Learning Objectives in this Part of the Lesson

Applications

« Be aware of the history of Java

concurrency & paraIIeIism Additional Frameworks & Languages

Java/INI

Threading & Synchronization Packages

Java Execution Environment (e.g., JVM)

C++/C

System Libraries

C

Operating System Kernel

Hopefully, you'll already know some of this!!!

Learning Objectives in this Part of the Lesson

« Know which Java mechanism(s)
to understand & apply

A Brief History of
Concurrency &
Parallelism in Java

5

A Brief History of Concurrency & Parallelism in Java

» Foundational concurrency support

Applications
[
=
) Additional Frameworks & Languages
2
(©
i Threading & Synchronization Packages
e.g ’ Java t'hreads. & O Java Execution Environment (e.g., JVM)
built-in monitor objects T
available in Java 1.0 C'S

System Libraries

C

Operating System Kernel

A Brief History of Concurrency & Parallelism in Java

» Foundational concurrency support

 Focus on basic multi-threading
& synchronization primitives

See docs.oracle.com/javase/tutorial/essential/concurrency

https://docs.oracle.com/javase/tutorial/essential/concurrency

A Brief History of Concurrency & Parallelism in Java

« Foundational concurrency support SimpleBlockingBoundedQueue<Integer>

- Focus on basic multi-threadin simpleQueue = new
u o u T g SimpleBlockingBoundedQueue<>() ;
& synchronization primitives

Thread[] threads = new Thread[] {
new Thread (new Producer<>

(simpleQueue)),
new Thread (new Consumer<>
Allow multiple threads (simpleQueue))

to communicate via a };
bounded buffer

for (Thread thread : threads)
thread.start () ;

for (Thread thread : threads)
thread. join() ;

See github.com/douglascraigschmidt/Livel essons/tree/master/SimpleBlockingQueue

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

A Brief History of Concurrency & Parallelism in Java
« Foundational concurrency support SimpleBlockingBoundedQueue<Integer>

 Focus on basic multi-threadin simpleQueue = new
. - 9 SimpleBlockingBoundedQueue<> () ;
& synchronization primitives

Thread[] threads = new Thread[] {
new Thread (new Producer<>
(simpleQueue)),
new Thread (new Consumer<>
(simpleQueue))

};

Start & join these
) for (Thread thread : threads)
multiple threads \\\\\\\\\ thread.start () ;

for (Thread thread : threads)
thread. join() ;

See github.com/douglascraigschmidt/Livel essons/tree/master/SimpleBlockingQueue

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

A Brief History of Concurrency & Parallelism in Java
 Foundational concurrency support class SimpleBlockingBoundedQueue

. : : <E> {
» Focus on basic multi-threading public E take() ...{
& synchronization primitives synchronized (this) {
while (mList.isEmpty())
wait () ;

Built-in monitor object / notifyAll () ;

mutual exclusion &

coordination primitives return mList.poll();
}

}

See github.com/douglascraigschmidt/Livel essons/tree/master/SimpleBlockingQueue

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

A Brief History of Concurrency & Parallelism in Java

» Foundational concurrency support

« Efficient, but low-level & very
limited in capabilities

11

A Brief History of Concurrency & Parallelism in Java

» Foundational concurrency support

§

« Efficient, but low-level & very
limited in capabilities

« Many accidental complexities

CAUTION
(J
FLOOR s
SLIPPERY \ Accidental complexities arise
WHEN WET pN from limitations with software
technigues, tools, & methods

See en.wikipedia.org/wiki/No_Silver Bullet

https://en.wikipedia.org/wiki/No_Silver_Bullet

A Brief History of Concurrency & Parallelism in Java

« Advanced concurrency support Applications

Additional Frameworks & Languages

Threading & Synchronization Packages

Java/INI

e.qg, Java executor fram ework, Java Execution Environment (e.g., JVM)

synchronizers, blocking queues,
atomics, & concurrent collections
available in Java 1.5+

C++/C

System Libraries

C

Operating System Kernel

13

A Brief History of Concurrency & Parallelism in Java

« Advanced concurrency support ExecutorCompletionService

» Focus on course-grained “task

parallelism” whose computations
bl
can run concurrently S

execute() run ()

2.o0ffer () m

- > < -
~ submit() runnable egegegeg

| WorkQueue S~ WorkerThreads
take() <

— / Completion 3.take()
Queue 5.add()

)) 4 .run()
eg eé 6.take () —— / runnable

Future &

1.submit (task)

Future ThreadPoolExecutor

Future

i

See en.wikipedia.org/wiki/Task parallelism

https://en.wikipedia.org/wiki/Task_parallelism

A Brief History of Concurrency & Parallelism in Java

« Advanced concurrency support ExecutorService executor =
] “ Executors.newFixedThreadPool
* Focus on course-grained tas_k (numOfBeings,
parallelism” whose computations mThreadFactory) ;

can run concurrently e
CyclicBarrier entryBarrier =

new CyclicBarrier (numOfBeings+l) ;

CountDownlLatch exitBarrier =

Create a fixed-sized thread pool new CountDownLatch (numOfBeings) ;
& also coordinate the starting &
stopping of multiple tasks that

acquire/release shared resources

for (int i=0; i < beingCount; ++i)
executor.execute
(makeBeingRunnable (i,
entryBarrier,
exitBarrier));

 See github.com/douglascraigschmidty/Livel essons/tree/master/PalantiriManagerApplication

https://github.com/douglascraigschmidt/LiveLessons/tree/master/PalantiriManagerApplication

A Brief History of Concurrency & ParaIIellsm in Java
« Advanced concurrency support .

« Feature-rich & optimized, but also
tedious & error-prone to program

A Brief History of Concurrency & Parallelism in Java

« Foundational parallelism support

Applications

Additional Frameworks & Languages

Java/INI

Threading & Synchronization Packages

Java Execution Environment (e.g., JVM)

System Libraries

O
e.g., Java fork-join pool ¥
available in Java 1.7 Q'}

C

Operating System Kernel

17

A Brief History of Concurrency & Parallelism in Java

» Foundational parallelism support
« Focus on data parallelism

Task

fork()

that runs the same task on Sub-task, Sub-task,
different data elements for'k() folk()
Sub-task, , Sub-task, Sub-task, , Sub-task, ,
Prolcess Prolcess Prol‘ess Prolcess
sequentially sequentially sequentially sequentially

See en.wikipedia.org/wiki/Data parallelism

https://en.wikipedia.org/wiki/Data_parallelism

A Brief History of Concurrency & Parallelism in Java

« Foundational parallelism support =~ List<List<SearchResults>>
listOfListOfSearchResults =

« Focus on data parallelism ForkJoinPool
that runs the same task on . commonPool ()
different data elements .invoke (new
SearchWithForkJoinTask
(inputlist,
mPhrasesToFind, ...));

Input Strings to Search

Use a common fork-join pool

to search input strings to - - - -

locate phrases that match

Search Phrases

See github.com/douglascraigschmidt/LiveLessons/tree/master/SearchForkJoin

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SearchForkJoin

A Brief History of Concurrency & Parallelism in Java

« Foundational parallelism support Task
|
fork()
Sub-task; Sub-task,
| |
fork() fork()
« Powerful & scaIabIe, but Sulla-taskl_1 Sub;taskl_2 Sub-tlask2_1 Sub-talskz_2
tedious to program directly ~rocess Process Process Process

sequentially sequentially sequentially sequentially

20

A Brief History of Concurrency & Parallelism in Java

» Advanced parallelism support

Applications

Additional Frameworks & Languages

Java/INI

Threading & Synchronization Packages

|

Java Execution Environment (e.g., JVM)

System Libraries

e.g., Java parallel streams
& completable futures
available in Java 1.8

@)
~~
+
+
@)

C

Operating System Kernel

21

A Brief History of Concurrency & Parallelism in Java

» Advanced parallelism support Parallel Streams

» Focus on functional programming BELIEEA. ..
for data parallelism

———————————————————————————

See en.wikipedia.org/wiki/Data parallelism

https://en.wikipedia.org/wiki/Data_parallelism

A Brief History of Concurrency & Parallelism in Java

» Advanced parallelism support 3
. F f | i foager = 8 b
ocus on functional programming supplyAsync S esm—
for data parallelism & reactive (getStartPage())

asynchrony
14 / X, A 26

/1mgNum1\ page /lmgNum2\ /page\ 8 ‘

thenApplyAsync . thenComposeAsync
(countImages (page)) (crawlHyperLinks
.thenApply (List: :size) (page))

1 AX’ / 426

/imgNuml\ . thenCombine (/imgNum2\,
(imgNuml, imgNum2) ->
Integer: : sum)

See gist.github.com/staltz/868e7e9bc2a/b8c1f754

https://gist.github.com/staltz/868e7e9bc2a7b8c1f754

A Brief History of Concurrency & Parallelism in Java
 Advanced parallelism support List<Image> images =

. Focus on functional programming “*1S

. . .parallelStream()
for data parallelism & reactive filter (not (this::urlCached))
asynchrony

.map (this: :downloadImage)
.flatMap (this: :applyFilters)
.collect(toList()) ;

Synchronously download images that
aren’t already cached from a list of URLs
& process/store the images in paralle/

See github.com/douglascraigschmidt/LivelLessons/tree/master/ImageStreamGang

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

A Brief History of Concurrency & Parallelism in Java

- Advanced parallelism support CompletableFuture<Stream<Image>>
» Focus on functional programming res:t;:i;‘z‘;re = urls
f;c;r rc\l(e:art]aoparallel|sm & reactive map (this: : checkUrlCachedAsyne)
ynchrony

.map (this: :downloadImageAsync)

.flatMap (this: :applyFiltersAsync)

.collect (toFuture())

.thenApply (stream ->
log(stream. flatMap

(Optional: :stream),
Asynchronously download images that urls.size()))

aren’t already cached from a list of URLs| .join() ;
& process/store the images in paralle/

See github.com/douglascraigschmidt/LivelLessons/tree/master/ImageStreamGang

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

A Brief History of Concurrency & Parallelism in Java

» Advanced parallelism support

 Strikes an effective balance between
productivity & performance Performance

Productivity

26

A Brief History of Concurrency & ParaIIellsm in Java
» Advanced parallelism support '

Parallel Streams

eé{}—)é =—>§ =—>§

| itter(notthis: uriCached) |

Lol 1

« However, may be overly prescriptive

27

Which Java Mechanism(s)
to Understand & Apply

28

Which Java Mechanism(s) to Understand & Apply

 Java’s concurrency & parallelism
mechanisms span multiple layers
in the software stack

Applications

Additional Application Frameworks

=
M
§ Concurrency/Parallelism Frameworks
© Java Threads & Synchronizers
o ’ Execution Environment (JVM, Dalvik/ART, etc.)
+
+
O System Libraries
O -
Operating System Kernel

@ = = gg

29

Which Java Mechanism(s) to Understand & Apply

 Java’s concurrency & parallelism
mechanisms span multiple layers
in the software stack

» Choosing best mechanism(s)
depend on various factors

Applications

Additional Application Frameworks

Concurrency/Parallelism Frameworks
Java Threads & Synchronizers

Java/INI

Execution Environment (JVM, Dalvik/ART, etc.)

C++/C

System Libraries

Operating System Kernel

30

C

Which Java Mechanism(s) to Understand & Apply

» Developers of low-level classes &
performance-sensitive apps may
prefer shared object mechanisms

Applications

Additional Application Frameworks

Package java.util.concurrent

Description Concurrency/Parallelism Frameworks

Java Threads & Synchronizers

Utility classes commonly useful in concurrent
programming. This package includes a few small
standardized extensible frameworks, as well as
some classes that provide useful functionality
and are otherwise tedious or difficult to
implement. Here are brief descriptions of the
main components. See also the
java.util.concurrent.locks and
java.util.concurrent.atomic
packages.

Execution Environment (JVM, Dalvik/ART, etc.)

System Libraries

Operating System Kernel

@ = = 9o

e.g., java.util.concurrent as per www.youtube.com/watch?v=sq0MX3fHkro

http://www.youtube.com/watch?v=sq0MX3fHkro

Which Java Mechanism(s) to Understand & Apply

» Developers of low-level classes &
performance-sensitive apps may
prefer shared object mechanisms

* Pros: Efficient & lightweight
« Cons: Tedious & error-prone

Applications

Additional Application Frameworks

Concurrency/Parallelism Frameworks
Java Threads & Synchronizers

Java/INI

Execution Environment (JVM, Dalvik/ART, etc.)

System Libraries

Operating System Kernel

C++/C

C

@ = = g

32

Which Java Mechanism(s) to Understand & Apply

» Framework developers may want
to use the Java message passing

mechanisms

Message

Message
Queue

Background,
Thread A —

Message

| Handler |

<
\
[Message |
N
-Message = <
el I
5
Ul Thread _ < - executor
(main thread)—) AsyncTask

Applications

Additional Application Frameworks

Concurrency/Parallelism Frameworks
Java Threads & Synchronizers

Execution Environment (JVM, Dalvik/ART, etc.)

System Libraries

Operating System Kernel

@ = = 9o

e.g., Android AsyncTask/HaMeR frameworks or Java ExecutorCompetionService

Which Java Mechanism(s) to Understand & Apply

» Framework developers may want
to use the Java message passing
mechanisms

Applications

Additional Application Frameworks

« Pros: Flexible & decoupled Z
e © Concurrency/Parallelism Frameworks

* Cons: Time/ Space overhead ,L,% Java Threads & Synchronizers
o Execution Environment (JVM, Dalvik/ART, etc.)
+
+
O System Libraries
O

@ = = g

34

Which Java Mechanism(s) to Understand & Apply

" proarem wiigher-evel framenork

program w/higher-level frameworks
Additional Application Frameworks

Concurrency/Parallelism Frameworks
Java Threads & Synchronizers

Execution Environment (JVM, Dalvik/ART, etc.)

System Libraries

C++/C

C

Operating System Kernel

@ = = g

e.g., Java 8 parallel streams & completable futures, RxJava, etc.

Which Java Mechanism(s) to Understand & Apply

» Mobile app developers may want to A
. pplications
program w/higher-level frameworks _

* Pros: Productivity & robustness Additional Application Frameworks

 Cons: Time/space overhead & .
& | inti Y Concurrency/Parallelism Frameworks
overly prescriptive i Java Threads & Synchronizers

o Execution Environment (JVM, Dalvik/ART, etc.)
+

+

O System Libraries

@)

Operating System Kernel

@ = = g

36

Which Java Mechanism(s) to Understand & Apply

—) =, Applications

—i Additional Application Frameworks

T ol

Concurrency/Parallelism Frameworks
Java Threads & Synchronizers

SO v
-

Java/INI

)

Execution Environment (JVM, Dalvik/ART, etc.)

C++/C

System Libraries

C

Operating System Kernel

“Full stack” developers should understand concepts & mechanisms at each layer

End of Background on
Java Concurrency &
Parallelism (Part 2)

38

