Background on Goncurrency &

Paralielism in Java (Part 1)

Douglas G. Schmidt
id.schmidt@uanderhiit.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashuille, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand the meaning of the
terms concurrency & parallelism

Task
fork fork
Sub-Task, Sub-Task,
fork fork fork fork
Sub-Task, ; Sub-Task; , Sub-Task, , Sub-Task, ,

join

join

S =S o

join

join

An Overview
of Concurrency

An Overview of Concurrency

« Concurrency is a form of computing where threads can run simultaneously

x
.8 ™.

~

J

See en.wikipedia.org/wiki/Concurrency (computer science)

https://en.wikipedia.org/wiki/Concurrency_(computer_science)

An Overview of Concurrency

« Concurrency is a form of computing where threads can run simultaneously
4)

—ig _ig _%g

new Thread(() -> ///
someComputations()) ;
/»é il
A Java threads are units of execution /

for instruction streams that can run
concurrently on processor cores

See docs.oracle.com/javase/tutorial/essential/concurrency/threads.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/threads.html

An Overview of Concurrency

« Concurrency is a form of computing where threads can run simultaneously

« Often used to offload work from the user ()
interface (UI) thread to background %’é éé éé
thread(s) SO o

background
threads | <
= <
Ul
thread

See developer.android.com/topic/performance/threads.html

https://developer.android.com/topic/performance/threads.html

An Overview of Concurrency

« Concurrency is a form of computing where threads can run simultaneously
« Often used to offload work from the user (

interface (UI) thread to background %’é éé , > & éé
thread(s), e.g. \ \ X 2 '
- Background thread(s) can block packgoling
threads

« The UI thread does not block =5 £

. - J

Ul
thread

See developer.android.com/training/multiple-threads/communicate-ui.html

https://developer.android.com/training/multiple-threads/communicate-ui.html

An Overview of Concurrency
« Concurrent Java threads interact via shared objects and/or message passing

-
%é
ég send ()
read() \

»

‘\

write ()

&

See docs.oracle.com/javase/8/docs/api/?java/util/concurrent/package-summary.html

https://docs.oracle.com/javase/8/docs/api/?java/util/concurrent/package-summary.html

An Overview of Concurrency

« Concurrent Java threads interact via shared objects and/or message passing
- Shared objects

» Synchronize concurrent operations == ?sendﬂ S5
. . . read () \ -,
on objects so object state remains \ < m A
coherent after each operation write () | z A
g ~Z
% J

_>—>

T3

A Wa/t/ng lock T

Lock acquired
~ :
f 3 —y
Runn/'ng

Critical Section Loc/(released Thread

See tutorials.jenkov.com/java-concurrency/thread-safety.html

http://tutorials.jenkov.com/java-concurrency/thread-safety.html

An Overview of Concurrency

« Concurrent Java threads interact via shared objects and/or message passing
- Shared objects (4
€

read ()

« Examples of Java synchronizers:

» Synchronized statements/methods
Reentrant locks & intrinsic locks
Atomic operations
Semaphores & condition objects

“Compare-and-swap” (CAS)
operations in sun.misc.unsafe

See dzone.com/articles/the-java-synchronizers

https://dzone.com/articles/the-java-synchronizers

An Overview of Concurrency

« Concurrent Java threads interact via shared objects and/or message passing

%_,
- Message passing ﬁéd g send()
« Send message(s) from producer

e ‘ recv ()
thread(s) to consumer thread(s) wnteo . -

via a thread-safe queue

J

Thread 1 Thread 2
BlockingQueue

Put Take

See en.wikipedia.org/wiki/Message passing

https://en.wikipedia.org/wiki/Message_passing

An Overview of Concurrency

« Concurrent Java threads interact via shared objects and/or message passing

« Message passing

« Examples of Java thread-safe queues
« Array & linked blocking queues
* Priority blocking queue
« Synchronous queue
« Concurrent linked queue

See docs.oracle.com/javase/tutorial/collections/implementations/queue.html

https://docs.oracle.com/javase/tutorial/collections/implementations/queue.html

An Overview of Concurrency

 Key goals of using shared objects and/or
message passing are to share resources ~ \! /'d—
B

safely/efficiently & avoid hazards
® ‘/.a.
V?
- }
e SR
=51
- e

‘ See en.wikipedia.org/wiki/Thread safety |

https://en.wikipedia.org/wiki/Thread_safety

An Overview of Concurrency

» Key goals of using shared objects and/or [))
message passing are to share resources %’é *’é %é
safely/efficiently & avoid hazards, e.q. read() 7 '

« Race conditions eite) H
« Race conditions occur when a =5 —Z

J

program depends upon the .
sequence or timing of threads
for it to operate properly

/ Shared State

See en.wikipedia.org/wiki/Race condition#Software

https://en.wikipedia.org/wiki/Race_condition#Software

An Overview of Concurrency

 Key goals of using shared objects and/or
message passing are to share resources
safely/efficiently & avoid hazards, e.q.

Race conditions

« Race conditions occur when a
program depends upon the
sequence or timing of threads
for it to operate properly

J

Shared State

This test program induces race conditions due
to lack of synchronization between producer &
consumer threads accessing a bounded gueue

See github.com/douglascraigschmidt/LiveLessons/tree/master/BuggyQueue

https://github.com/douglascraigschmidt/LiveLessons/tree/master/BuggyQueue

An Overview of Concurrency

 Key goals of using shared objects and/or
message passing are to share resources
safely/efficiently & avoid hazards, e.q.

« Memory inconsistencies

« These errors occur when different
threads have inconsistent views of
what should be the same data

See jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

http://jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

An Overview of Concurrency

 Key goals of using shared objects and/or
<<neec|s?) E (ﬁ)wns>>

message passing are to share resources
safely/efficiently & avoid hazards, e.q.

 Deadlocks > T
« Occur when 2+ competing threads 2
are waiting for the other(s) to finish,
& thus none ever do
<<owns>> <<needs>>

See en.wikipedia.org/wiki/Deadlock

http://en.wikipedia.org/wiki/Deadlock

An Overview
of Parallelism

18

An Overview of Parallelism

« Parallelism is a form of computing that Task
performs several steps on multiple '
fork()
processor cores Sub-task; Sub-task,
I I
fork() fork()
Sub-task, , Sub-task; , Sub-task, , Sub-task, ,
| | | |
Process Process Process Process
sequentially sequentially sequentially sequentially

See en.wikipedia.org/wiki/Parallel computing

https://en.wikipedia.org/wiki/Parallel_computing

An Overview of Parallelism

 Parallelism is a form of computing that
performs several steps on multiple

processor cores, i.e.
 Split — partition a task
into sub-tasks

Task

Sub-task,

fork()

fork()

Sub-task,

fork()

Sub'taSI(]_l

Sub'taSklz

SU b'taSkz_l

SU b'taSkz_Z

ITIY

An Overview of Parallelism

 Parallelism is a form of computing that
performs several steps on multiple
processor cores, i.e.

. | | | |
¢ Apply - RU n mdependent Process Process Process Process

su b_t asks in p ara | |e| sequentially sequentially sequentially sequentially

= s s s

YYIY

An Overview of Parallelism

 Parallelism is a form of computing that
performs several steps on multiple
processor cores, i.e.

« Combine — Merge the sub-
results from sub-tasks into
one final result

join join

join

_YYIY

An Overview of Parallelism

A key goal of parallelism is to efficiently
partition tasks into sub-tasks & combine
results

23

An Overview of Parallelism

* A key goal of parallelism is to efficiently E===3

partition tasks into sub-tasks & combine
results

 Parallelism thus focuses on
optimizing performance

. e.g., throughput, scalability, & latency

—

T

S — Bt _

VOLUME I

See www.ibm.com/developerworks/library/j-java-streams-4-brian-goetz

http://www.ibm.com/developerworks/library/j-java-streams-4-brian-goetz

An Overview of Parallelism

A key goal of parallelism is to efficiently

partition tasks into sub-tasks & combine
results

Task

Sub-task, Sub-task,

I
fork()

Sub-task ; Sub-task;
) |
- Parallelism works best when ~ojess - ; Process
threads share no mutable 77" ° sequentially

state & don't block —Z

TYYY

See henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html

http://henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html

An Overview of Parallelism

A key goal of parallelism is to efficiently Task
partition tasks into sub-tasks & combine
results

Sub-task,

Sub-task,

I
fork()

Sub-task ; Sub-task;
) |
- Parallelism works best when ~ojess - ; Process
threads share no mutable 77" ° sequentially

state & don't block —Z

« Hence Java’s emphasis on
“fork-join” & “work-stealing”

See en.wikipedia.org/wiki/Fork-join_model & en.wikipedia.org/wiki/Work stealing

https://en.wikipedia.org/wiki/Fork%E2%80%93join_model
https://en.wikipedia.org/wiki/Work_stealing

An Overview of Parallelism

* Brian Goetz has an excellent talk
about the evolution of Java from
concurrent to parallel computing

' See www.youtube.com/watch?v=NsDE7E8sIdQ

http://www.youtube.com/watch?v=NsDE7E8sIdQ

An Overview of Parallelism

« Brian Goetz has an excellent talk ¢ .
about the evolution of Java from
concurrent to parallel computing

¢ Actual

— Predicted

His talk emphasizes that Java 8
combines functional programming
with fine-grained data parallelism
to leverage many-core processors

0+ " 7 T r =
2004 2006 2009 2012 2014 2017

See www.infog.com/presentations/parallel-java-se-8

http://www.infoq.com/presentations/parallel-java-se-8

End of Background on
Java Concurrency &
Parallelism (Part 1)

29

