
Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

Android Services & Local IPC:
The Command Processor Pattern (Part 1)

mailto:d.schmidt@vanderbilt.edu

Android Services & Local IPC Douglas C. Schmidt

2

• Understand the Command Processor pattern

Learning Objectives in this Part of the Module

Android Services & Local IPC Douglas C. Schmidt

3

Context
• Synchronous method calls in an Activity

can block client for extended periods
• e.g., the downloadImage() call will

block the DownloadActivity while the
DownloadService fetches the image

1: Activity makes
blocking call

DownloadActivity Process

DownloadService Process

Challenge: Processing a Long-Running Action

Android Services & Local IPC Douglas C. Schmidt

4

Problems
• Android generates an “Application Not

Responding” (ANR) dialog if an app
doesn’t respond to user input within a
short time (~3 seconds)
• Calling a potentially lengthy operation

like downloadImage() in the main
thread can therefore be problematic

See developer.android.com/training/articles/perf-anr.html for more on ANRs

1: Activity makes
blocking call

DownloadActivity Process

DownloadService Process

Challenge: Processing a Long-Running Action

http://developer.android.com/training/articles/perf-anr.html

Android Services & Local IPC Douglas C. Schmidt

5

Solution
• Create a command processor that

encapsulates a download request as
an object that can be passed to a
Service to execute the request

Download
Service

onHandleIntent

Download
Activity

Command
Processor

startService

Challenge: Processing a Long-Running Action

Android Services & Local IPC Douglas C. Schmidt

6

Solution
• Create a command processor that

encapsulates a download request as
an object that can be passed to a
Service to execute the request

• This process works as follows:
• Implement a DownloadService

that inherits from Android’s IntentService

Activity Manager
Service

startService

Download
Service

onHandleIntent

Download
Activity

Context

startService

Challenge: Processing a Long-Running Action

Android Services & Local IPC Douglas C. Schmidt

7

Activity Manager
Service

startService

Download
Service

onHandleIntent

Download
Activity

Context

startService

Challenge: Processing a Long-Running Action
Solution
• Create a command processor that

encapsulates a download request as
an object that can be passed to a
Service to execute the request

• This process works as follows:
• Implement a DownloadService

that inherits from Android’s IntentService
• Activity creates Intent command designating

DownloadService as target
• Add URL & callback Messenger as “extras”

Android Services & Local IPC Douglas C. Schmidt

8

Activity Manager
Service

startService

Download
Service

onHandleIntent

Download
Activity

Context

startService

Challenge: Processing a Long-Running Action
Solution
• Create a command processor that

encapsulates a download request as
an object that can be passed to a
Service to execute the request

• This process works as follows:
• Implement a DownloadService

that inherits from Android’s IntentService
• Activity creates Intent command designating

DownloadService as target
• Activity calls startService() with Intent

Android Services & Local IPC Douglas C. Schmidt

9

Activity Manager
Service

startService

Download
Service

onHandleIntent

Download
Activity

Context

startService

Challenge: Processing a Long-Running Action
Solution
• Create a command processor that

encapsulates a download request as
an object that can be passed to a
Service to execute the request

• This process works as follows:
• Implement a DownloadService

that inherits from Android’s IntentService
• Activity creates Intent command designating

DownloadService as target
• Activity calls startService() with Intent
• Activity Manager Service starts IntentService,

which spawns internal thread

Android Services & Local IPC Douglas C. Schmidt

10

Activity Manager
Service

startService

Download
Service

onHandleIntent

Download
Activity

Context

startService

Challenge: Processing a Long-Running Action
Solution
• Create a command processor that

encapsulates a download request as
an object that can be passed to a
Service to execute the request

• This process works as follows:
• Implement a DownloadService

that inherits from Android’s IntentService
• Activity creates Intent command designating

DownloadService as target
• Activity calls startService() with Intent
• Activity Manager Service starts IntentService,

which spawns internal thread
• IntentService calls onHandleIntent() to download image in separate thread

See developer.android.com/reference/android/app/IntentService.html for more

http://developer.android.com/reference/android/app/IntentService.html

Android Services & Local IPC Douglas C. Schmidt

11

Command Processor POSA1 Design Pattern
Intent
• Packages a piece of application functionality—as well as its

parameterization in an object—to make it usable in another context, such
as later in time or in a different thread

GoF book contains description of similar Command pattern

www.dre.vanderbilt.edu/~schmidt/PDF/CommandRevisited.pdf has more info

http://kircher-schwanninger.de/michael/publications/CommandRevisited.pdf

Android Services & Local IPC Douglas C. Schmidt

12

Command Processor POSA1 Design Pattern
Applicability
• When there’s a need to decouple the decision of what piece of code

should be executed from the decision of when this should happen
• e.g., specify, queue, & execute service requests at different times

Android Services & Local IPC Douglas C. Schmidt

13

Command Processor POSA1 Design Pattern
Applicability
• When there’s a need to decouple the decision of what piece of code

should be executed from the decision of when this should happen
• When there’s a need to ensure service enhancements don’t break

existing code

Android Services & Local IPC Douglas C. Schmidt

14

Command Processor POSA1 Design Pattern
Applicability
• When there’s a need to decouple the decision of what piece of code

should be executed from the decision of when this should happen
• When there’s a need to ensure service enhancements don’t break

existing code
• When additional capabilities (such as undo/redo & persistence) must be

implemented consistently for all requests to a service

Android Services & Local IPC Douglas C. Schmidt

15

Command Processor POSA1 Design Pattern
Structure & Participants

Intent

Android Services & Local IPC Douglas C. Schmidt

16

Command Processor POSA1 Design Pattern
Structure & Participants

Intent +
“extras”

Android Services & Local IPC Douglas C. Schmidt

17

Command Processor POSA1 Design Pattern
Structure & Participants

Activity

Android Services & Local IPC Douglas C. Schmidt

18

Command Processor POSA1 Design Pattern
Structure & Participants

Intent
Service

Android Services & Local IPC Douglas C. Schmidt

19

Command Processor POSA1 Design Pattern
Structure & Participants

Context

Android Services & Local IPC Douglas C. Schmidt

20

Command Processor POSA1 Design Pattern
Dynamics

Creates the Intent &
call sendService()

Android Services & Local IPC Douglas C. Schmidt

21

Command Processor POSA1 Design Pattern
Dynamics

IntentService

Android Services & Local IPC Douglas C. Schmidt

22

Command Processor POSA1 Design Pattern
Dynamics

Call onHandleIntent()
to process the Intent

Android Services & Local IPC Douglas C. Schmidt

23

Consequences
+ Client isn’t blocked for duration

of command processing

Command Processor POSA1 Design Pattern

 public void runMessengerDownload(View view) {
 String url = editText.getText().toString();

 Intent intent = new Intent(this, DownloadService.class);
 intent.setData(Uri.parse (url));
 Messenger messenger = new Messenger(handler);
 intent.putExtra("MESSENGER", messenger);

 startService(intent);
 }

Caller doesn’t block

Android Services & Local IPC Douglas C. Schmidt

24

Consequences
+ Client isn’t blocked for duration

of command processing
+ Allow different users to work with

service in different ways via commands

Command Processor POSA1 Design Pattern

public void onHandleIntent(Intent intent) {
 Bundle extras = intent.getExtras();
 if (extras != null && extras.get("MESSENGER") != null)
 messengerDownload (intent);
 else
 broadcastDownload (intent);
}

Android Services & Local IPC Douglas C. Schmidt

25

Consequences
– Additional programming to handle info

passed with commands (cf. Broker)

Command Processor POSA1 Design Pattern

public void onHandleIntent(Intent intent) {
 Bundle extras = intent.getExtras();
 if (extras != null && extras.get("MESSENGER") != null)
 messengerDownload (intent);
 else
 broadcastDownload (intent);
}

Android Services & Local IPC Douglas C. Schmidt

26

Consequences
– Additional programming to handle info

passed with commands (cf. Broker)
– Supporting two-way operations requires

additional patterns & IPC mechanisms

Command Processor POSA1 Design Pattern

void sendPath (String outputPath, Messenger messenger) {
 Message msg = Message.obtain();
 msg.arg1 = result;
 Bundle bundle = new Bundle();
 bundle.putString(RESULT_PATH, outputPath);
 msg.setData(bundle);
 ...
 messenger.send(msg);
}

Android Services & Local IPC Douglas C. Schmidt

27

Known Uses
• Android IntentService
• Many UI toolkits

• InterViews, ET++,
MacApp, Swing, AWT,
etc.

• Interpreters for command-
line shells

• Java Runnable interface

Command Processor POSA1 Design Pattern

developer.android.com/reference/android/app/IntentService.html

http://developer.android.com/reference/android/app/IntentService.html

Android Services & Local IPC Douglas C. Schmidt

28

• Command Processor provides a relatively
straightforward means for passing commands
asynchronously between threads and/or
processes in concurrent & networked software

Summary

www.dre.vanderbilt.edu/~schmidt/PDF/CommandRevisited.pdf has more info

http://www.dre.vanderbilt.edu/~schmidt/PDF/CommandProcessor.pdf

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

Android Services & Local IPC:
The Command Processor Pattern (Part 2)

mailto:d.schmidt@vanderbilt.edu

Android Services & Local IPC Douglas C. Schmidt

30

• Understand how Command Processor is applied in Android

Learning Objectives in this Part of the Module

onHandleIntent()

…

process intent

MyIntent
Service

3

queue
intent

dequeue
intent

Service
Handler

 sendMessage()

 onCreate()

 onStartCommand()

2

Intent Intent
Service

send
intent

startService()

 handleMessage()

4 5

1 Client

Android Services & Local IPC Douglas C. Schmidt

31

Implementation
• Define an abstract class for

command execution that will be
used by the executor
• Typically define an execute()

operation

Command Processor POSA1 Design Pattern
public class Intent implements
 Parcelable, Cloneable {
 ...
}

Android Services & Local IPC Douglas C. Schmidt

32

Implementation
• Define an abstract class for

command execution that will be
used by the executor

• Add state which concrete
commands need during their
execution to the context
• Make the context available to

the concrete command

Command Processor POSA1 Design Pattern
public class Intent implements
 Parcelable, Cloneable {
 ...
 public Intent setData(Uri data)
 { /* ... */ }

 public Uri getData()
 { /* ... */ }

 public Intent putExtra
 (String name, Bundle value)
 {/* ... */ }

 public Object getExtra
 (String name)
 {/* ... */ }
}

Android Services & Local IPC Douglas C. Schmidt

33

Implementation
• Define an abstract class for

command execution that will be
used by the executor

• Add state which concrete
commands need during their
execution to the context

• Define & implement the creator
• e.g., using patterns like

Abstract Factory or Factory
Method

Command Processor POSA1 Design Pattern
public class DownloadActivity
 extends Activity {

 ...

 public void onClick(View v) {
 Intent intent = new
 Intent(DownloadActivity.this,
 DownloadService.class);
 ...
 intent.setData
 (Uri.parse(userInput);
 ...
 startService(intent);
 }
 ...

Android Services & Local IPC Douglas C. Schmidt

34

Implementation
• Define an abstract class for

command execution that will be
used by the executor

• Add state which concrete
commands need during their
execution to the context

• Define & implement the creator
• Define the context

• If necessary allow it to keep
references to command
objects, but be aware of
lifecycle issues

Command Processor POSA1 Design Pattern
public abstract class Context {
 public abstract void
 sendBroadcast(Intent intent);

 public abstract Intent
 registerReceiver
 (BroadcastReceiver receiver,
 IntentFilter filter);

Android Services & Local IPC Douglas C. Schmidt

35

Implementation
• Define an abstract class for

command execution that will be
used by the executor

• Add state which concrete
commands need during their
execution to the context

• Define & implement the creator
• Define the context
• Implement specific command

functionality in subclasses:
• Implementing the execute()

operation, adding necessary
attributes

Command Processor POSA1 Design Pattern
public class DownloadService
 extends IntentService {

 ...

 protected void
 onHandleIntent(Intent intent)
 {

 downloadImage(intent);
 }
 ...
}

Android Services & Local IPC Douglas C. Schmidt

36

DownloadService

onHandleIntent()

DownloadService Process

startService()

DownloadActivity

mMessenger

DownloadActivity Process

1: Sent Intent to
Activity Manager
Service

4: Download
image & reply
via Messenger

2: Activity Manager
Service starts
the Download
Service if it’s not
already running

(Some) steps involved in the Android implementation of Command Processor pattern

Activity Manager Service

Command Processor POSA1 Design Pattern

Other patterns are involved here: Activator, Messaging, Result Callback, etc.

3: IntentService
base class queues
the Intent & calls
onHandleIntent(),
which runs in a
separate thread

5: Return URI

Applying Command Processor in Android

Android Services & Local IPC Douglas C. Schmidt

37

(Portion of) the DownloadActivity implemented using the Command
Processor pattern

 public void runDownloadImage(View view) {
 URL url = new URL(image_url.getText().toString())
 Intent intent = new Intent(this,
 DownloadService.class);

 intent.putExtra(DownloadService.MESSENGER,
 new Messenger(handler))
 intent.putExtra(DownloadService.URL, url);

 startService(intent);
 }

Applying Command Processor in Android

Command Processor POSA1 Design Pattern

This code runs in the DownloadActivity process

Make Intent “command”

Issue request to command processor

Android Services & Local IPC Douglas C. Schmidt

38

(Portion of) the DownloadService implemented using the Command
Processor pattern

public class DownloadService extends IntentService {
 ...

 protected void onHandleIntent(Intent intent) {
 Bundle extras = intent.getExtras();
 URL url = (URL)extras.get(URL);
 Messenger messender (Messenger)extras.get(MESSANGER);

 // Download image at designated URL & send
 // reply back to Activity via messenger callback
 downloadImage(url, messenger);
 }

}

Command Processor POSA1 Design Pattern

This code runs in a thread in the DownloadService process

Command processor executes the request

Applying Command Processor in Android

Android Services & Local IPC Douglas C. Schmidt

39

Summary
• The Android Intent Service framework implements

the Command Processor pattern & is used to
process Intents in a background Thread

onHandleIntent()

…

process intent

MyIntent
Service

3

queue
intent

dequeue
intent

Service
Handler

 sendMessage()

 onCreate()

 onStartCommand()

2

Intent Intent
Service

send
intent

startService()

 handleMessage()

4 5

1 Client

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

Android Services & Local IPC:
Overview of Bound Services

mailto:d.schmidt@vanderbilt.edu

Android Services & Local IPC Douglas C. Schmidt

41

Learning Objectives in this Part of the Module
• Understand how what a Bound

Service is & what hook methods it
defines to manage its various
lifecycle states

We’ll emphasize commonalities
& variabilities in our discussion

Android Services & Local IPC Douglas C. Schmidt

42

• A Bound Service offers components an interface that
clients can use to interact with the Service
• This interface can be generic

• e.g., using Messengers & Handlers for
inter- or intra-process communication

Interfacing with a Bound Service

Download
Service

Download
Activity

Messenger

send()

handleMessage()

Handler

Android Services & Local IPC Douglas C. Schmidt

43

• A Bound Service offers components an interface that
clients can use to interact with the Service
• This interface can be generic
• This interface can also be specific

• e.g., using the Android Interface Definition
Language (AIDL) for inter- or intra-process
communication

Interfacing with a Bound Service

interface IDownload {
 String downloadImage(in Uri uri);
}

Download
Service

Download
Activity

Android Services & Local IPC Douglas C. Schmidt

44

• A Bound Service offers components an interface that
clients can use to interact with the Service
• This interface can be generic
• This interface can also be specific
• Both approaches use the Binder RPC mechanism

• This implements the Broker & Proxy patterns

Interfacing with a Bound Service

Download
Service

Download
Activity

Android Services & Local IPC Douglas C. Schmidt

45

• A Bound Service allows App components to bind to it by
calling bindService() to create a “persistent” connection

Launching a Bound Service

Intent intent = new
 Intent(IDownloadSync.class.getName());
bindService(intent, this.conn,
 Context.BIND_AUTO_CREATE);

developer.android.com/guide/components/services.html#CreatingBoundService

Download
Service

Download
Activity

http://developer.android.com/guide/components/services.html#CreatingBoundService

Android Services & Local IPC Douglas C. Schmidt

46

• A Bound Service allows App components to bind to it by
calling bindService() to create a “persistent” connection
• The client must provide ServiceConnection object to

monitor the connection with the Service

Launching a Bound Service

Download
Service

Download
Activity

Intent intent = new
 Intent(IDownloadSync.class.getName());
bindService(intent, this.conn,
 Context.BIND_AUTO_CREATE);

Android Services & Local IPC Douglas C. Schmidt

47

• When the client calls bindService() Android starts the
Service & invokes the Service’s onCreate() & onBind()
hook methods
• If the Service isn’t already running it will be activated

Connecting a Bound Service

IDownload.Stub binder;
Class DownloadService extends Service {
 public void onCreate(Bundle savedInstance) {
 binder = new IDownload.Stub() {
 public String downloadImage(String urlValue)
 { /* ... */ }

 }

... Download

Service

Download
Activity

See www.dre.vanderbilt.edu/~schmidt/PDF/Activator.pdf for info on Activator

http://www.dre.vanderbilt.edu/~schmidt/PDF/Activator.pdf

Android Services & Local IPC Douglas C. Schmidt

48

• When the client calls bindService() Android starts the
Service & invokes the Service’s onCreate() & onBind()
hook methods
• If the Service isn’t already running it will be activated
• onBind() returns an IBinder object that defines the API

for communicating with the Bound Service

Connecting a Bound Service

...
public IBinder onBind(Intent intent)
{
 return this.binder;
}

Download
Service

Download
Activity

An interesting callback-driven protocol is used to establish a connection

Android Services & Local IPC Douglas C. Schmidt

49

• When the client calls bindService() Android starts the
Service & invokes the Service’s onCreate() & onBind()
hook methods

• The client needs to implement an onServiceConnected()
hook method to get a proxy to the IBinder

Connecting a Bound Service

Idownload syncSvc;
ServiceConnection conn = new ServiceConnection() {
 public void onServiceConnected
 (ComponentName className, IBinder iSvc) {
 syncSvc = IDownload.Stub.asInterface(iSvc);
 }

Download
Service

Download
Activity

Android Services & Local IPC Douglas C. Schmidt

50

• A Bound Service offers components an interface that
clients can use to interact with the Service, e.g.:
• Sending requests
• Getting results &
• Conversing across processes via IPC

Interfacing with a Bound Service

Download
Service

Download
Activity

final String pathName =
 syncSvc.downloadImage(url);

Blocking call

Android Services & Local IPC Douglas C. Schmidt

51

• A Bound Service offers components an interface that
clients can use to interact with the Service, e.g.:
• Sending requests
• Getting results &
• Conversing across processes via IPC

Interfacing with a Bound Service

Download
Service

Download
Activity

IDownload.Stub binder = new IDownload.Stub()
{
 public String downloadImage(String url) {
 return downloadImageFromURL(url,
 DOWNLOADED_FILE_NAME_PREFIX);
}

Run in a separate
thread of control

Android Services & Local IPC Douglas C. Schmidt

52

• When a Bound Service is launched, it has a lifecycle that's
depends of the component(s) that access it
• i.e., it doesn’t run in the background indefinitely

When a client is done
interacting with the

service, it calls
unbindService() to

unbind

Download
Service

Download
Activity

Stopping a Bound Service

developer.android.com/guide/components/bound-services.html#Lifecycle

After there are no
clients bound to the

service it is destroyed

http://developer.android.com/guide/components/bound-services.html#Lifecycle

Android Services & Local IPC Douglas C. Schmidt

53

• It is possible to define “hybrid”
models that combine Bound &
Started Services
• If a Bound Service implements

onStartCommand() it won’t be
destroyed when it is unbound
from all clients

developer.android.com/guide/components/bound-services.html#Lifecycle

Hybrid Started & Bound Service Lifecycles

http://developer.android.com/guide/components/bound-services.html#Lifecycle

Android Services & Local IPC Douglas C. Schmidt

54

• It is possible to define “hybrid”
models that combine Bound &
Started Services
• If a Bound Service implements

onStartCommand() it won’t be
destroyed when it is unbound
from all clients

• If you return true when the
system calls onUnbind() the
onRebind() method will be
called the next time a client
binds to the Service
• Instead of receiving a call

to onBind()

developer.android.com/guide/components/bound-services.html#Lifecycle

Hybrid Started & Bound Service Lifecycles

http://developer.android.com/guide/components/bound-services.html#Lifecycle

Android Services & Local IPC Douglas C. Schmidt

55

• A protocol is used to interact between Activities & Bound Services
Protocol for Bound Service Interactions

bindService()

Activity

doSomething()

mDoSomething

ServiceConnection

Service

Client Process Server Process

ISomeBinder

onServiceConnected()

1: Bind to Service

2: Start Bound

Service process if
it’s not already
running

3: Return reference
to object that
implements the
IBinder interface

onBind()

4: Downcast
to Proxy

5:
 A

ss
ig

n
P

ro
xy

 to

lo
ca

l v
ar

ia
bl

e

6: Call the method
doSomething() via
Proxy

7: Stub dispatches
to method &
returns result

Binder IPC Mechanism

mBinder

Many patterns are involved here: Broker, Proxy, Activator, Adapter, etc.

Android Services & Local IPC Douglas C. Schmidt

56

Client Bound Service Interactions
• To bind to a service from your client, you must perform the following steps:

1. Implement ServiceConnection & override its
two callback methods:
• onServiceConnected() − Android calls this to

deliver the IBinder returned by the
service's onBind() method

• onServiceDisconnected() − Android calls this
when the connection to the service is
unexpectedly lost
• e.g., when the service has crashed or has

been killed (not called with client calls
unbindService())

bindService()

Activity

mDoSomething

ServiceConnection

Client Process

onServiceConnected()

onServiceDisConnected()

Android Services & Local IPC Douglas C. Schmidt

57

Client Bound Service Interactions
• To bind to a service from your client, you must perform the following steps:

1. Implement ServiceConnection & override its
two callback methods

2. Call bindService(), passing
the ServiceConnection implementation

bindService()

Activity

mDoSomething

ServiceConnection

Client Process

onServiceConnected()

onServiceDisConnected()

: A
ss

ig
n

P
ro

xy
 to

lo

ca
l v

ar
ia

bl
e

Android Services & Local IPC Douglas C. Schmidt

58

Client Bound Service Interactions
• To bind to a service from your client, you must perform the following steps:

1. Implement ServiceConnection & override its
two callback methods

2. Call bindService(), passing
the ServiceConnection implementation

3. When the system calls your
onServiceConnected() callback method, you
can begin making calls to the service, using the
methods defined by the interface

bindService()

Activity

mDoSomething

ServiceConnection

Client Process

onServiceConnected()

onServiceDisConnected()

Android Services & Local IPC Douglas C. Schmidt

59

Client Bound Service Interactions
• To bind to a service from your client, you must perform the following steps:

1. Implement ServiceConnection & override its
two callback methods

2. Call bindService(), passing
the ServiceConnection implementation

3. When the system calls your
onServiceConnected() callback method, you
can begin making calls to the service, using the
methods defined by the interface

4. To disconnect from the service,
call unbindService()
• When a client is destroyed, it is unbound

from the Service automatically

unBindService()

Activity

mDoSomething

ServiceConnection

Client Process

onServiceConnected()

onServiceDisConnected()

Android Services & Local IPC Douglas C. Schmidt

60

Client Bound Service Interactions
• To bind to a service from your client, you must perform the following steps:

1. Implement ServiceConnection & override its
two callback methods

2. Call bindService(), passing
the ServiceConnection implementation

3. When the system calls your
onServiceConnected() callback method, you
can begin making calls to the service, using the
methods defined by the interface

4. To disconnect from the service,
call unbindService()

• Always unbind when you're done interacting with the service or when your
activity pauses so that the service can shutdown while its not being used

unBindService()

Activity

mDoSomething

ServiceConnection

Client Process

onServiceConnected()

onServiceDisConnected()

Android Services & Local IPC Douglas C. Schmidt

61

Server Bound Service Interactions

• A Bound Service must perform the following steps when a client binds to it:
• When Android calls the Service's onBind()

method it returns an IBinder for
interacting with the Service

doSomething()

Service

Server Process

ISomeBinder

3: Return reference
to object that
implements the
IBinder interface

onBind()

mBinder

Android Services & Local IPC Douglas C. Schmidt

62

Server Bound Service Interactions

• A Bound Service must perform the following steps when a client binds to it:
• When Android calls the Service's onBind()

method it returns an IBinder for
interacting with the Service
• The binding is asynchronous

• i.e., bindService() returns
immediately & does not return
the IBinder to the client

doSomething()

Service

Server Process

ISomeBinder

onBind()

mBinder

Android Services & Local IPC Douglas C. Schmidt

63

Server Bound Service Interactions

• A Bound Service must perform the following steps when a client binds to it:
• When Android calls the Service's onBind()

method it returns an IBinder for
interacting with the Service
• The binding is asynchronous
• To receive the IBinder, the client

must create an instance of
ServiceConnection & pass it to
bindService()
• ServiceConnection implements

the onServiceConnected()
callback method that Android
invokes to deliver the IBinder

doSomething()

Service

Server Process

ISomeBinder

onBind()

mBinder

Android Services & Local IPC Douglas C. Schmidt

64

Communicating with Bound Services
• When creating a Bound Service, you must provide an IBinder via an interface

clients can use to interact with the Service via one of the following
• Extending the Binder class

• If your service runs in the same
process as the client you can
extend the Binder class & return an instance
from onBind()

bindService()

Activity

doSomething()

mDoSomething

ServiceConnection

Service

Client Process Server Process

ISomeBinder

onServiceConnected()

onBind()

mBinder

Android Services & Local IPC Douglas C. Schmidt

65

Communicating with Bound Services
• When creating a Bound Service, you must provide an IBinder via an interface

clients can use to interact with the Service via one of the following
• Extending the Binder class
• Using a Messenger

• Create an interface for the
Service with a Messenger that
allows the client to send
commands to the Service across
processes
• Doesn’t require thread-safe

components

bindService()

Activity

doSomething()

mDoSomething

ServiceConnection

Service

Client Process Server Process

ISomeBinder

onServiceConnected()

onBind()

mBinder

Android Services & Local IPC Douglas C. Schmidt

66

Communicating with Bound Services
• When creating a Bound Service, you must provide an IBinder via an interface

clients can use to interact with the Service via one of the following
• Extending the Binder class
• Using a Messenger
• Using Android Interface

Definition Language (AIDL)
• AIDL performs all the work

to decompose objects into
primitives that Linux can
understand & marshal them
across processes to perform
IPC
• Does require thread-safe

components

bindService()

Activity

doSomething()

mDoSomething

ServiceConnection

Service

Client Process Server Process

ISomeBinder

onServiceConnected()

onBind()

mBinder

Android Services & Local IPC Douglas C. Schmidt

67

Summary
• Apps can use Services to implement long-

running operations in the background

Download Service

Download Activity

Android Services & Local IPC Douglas C. Schmidt

68

Summary
• Apps can use Services to implement long-

running operations in the background
• Started Services are simple to program

Download Service

Download Activity

Android Services & Local IPC Douglas C. Schmidt

69

Summary
• Apps can use Services to implement long-

running operations in the background
• Started Services are simple to program
• Bound Services provide more powerful

communication models

Download Service

Download Activity

Android Services & Local IPC Douglas C. Schmidt

70

Summary
• Apps can use Services to implement long-

running operations in the background
• Started Services are simple to program
• Bound Services provide more powerful

communication models
• Examples of Android Bound Services:

• BluetoothHeadsetService
• Provides Bluetooth Headset &

Handsfree as Service in Phone App
• MediaPlaybackService

• Provides "background" audio
playback capabilities

• Exchange Email Services
• Manage email operations, such as

sending messages

See packages/apps in Android source code for many services

	Slide Number 1
	Learning Objectives in this Part of the Module
	Challenge: Processing a Long-Running Action
	Challenge: Processing a Long-Running Action
	Challenge: Processing a Long-Running Action
	Challenge: Processing a Long-Running Action
	Challenge: Processing a Long-Running Action
	Challenge: Processing a Long-Running Action
	Challenge: Processing a Long-Running Action
	Challenge: Processing a Long-Running Action
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Summary
	Slide Number 29
	Learning Objectives in this Part of the Module
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Summary
	Slide Number 40
	Learning Objectives in this Part of the Module
	Interfacing with a Bound Service
	Interfacing with a Bound Service
	Interfacing with a Bound Service
	Launching a Bound Service
	Launching a Bound Service
	Connecting a Bound Service
	Connecting a Bound Service
	Connecting a Bound Service
	Interfacing with a Bound Service
	Interfacing with a Bound Service
	Stopping a Bound Service
	Hybrid Started & Bound Service Lifecycles
	Hybrid Started & Bound Service Lifecycles
	Protocol for Bound Service Interactions
	Client Bound Service Interactions
	Client Bound Service Interactions
	Client Bound Service Interactions
	Client Bound Service Interactions
	Client Bound Service Interactions
	Server Bound Service Interactions
	Server Bound Service Interactions
	Server Bound Service Interactions
	Communicating with Bound Services
	Communicating with Bound Services
	Communicating with Bound Services
	Summary
	Summary
	Summary
	Summary

