Android Services & Local IPC:
The Command Processor Pattern (Part 1)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software
Integrated Systems

V

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Android Services & Local IPC Douglas C. Schmidt

Learning Objectives in this Part of the Module

« Understand the Command Processor pattern

Service Request Command Component
Client [
execute Processor execute function_1
‘ﬁ [I
- @ o —{ execute_request @ ‘B function_2
Issue request | Execute request '
Design Patterns e
Elements of Reusable
Object- Orlented ,Spftware
Elé&!‘\&i Iql;!in% Blehds E

Ralph |]
John Vlissides

zzzzz

PATTERN-ORIENTED SEEzmmmemoeny

g SOFTWARE S % i S e b
¥ ARCHITECTURE R

A System of Patterns "‘ -y

/////////

or

WILEY E

Android Services & Local IPC

Douglas C. Schmidt

Challenge: Processing a Long-Running Action

Context

e Synchronous method calls in an Activity
can block client for extended periods

e e.g., the downloadimage() call will
block the DownloadActivity while the
DownloadService fetches the image

DownloadActivity Process

ar@SHEN % FE N E 1054em
ﬁ ThreadedDownload

http://www.dre.vanderhilt.edu/
~schmidt/ka.png

Enter URL:

Run Run Run Reset
Runnable Messages Async Image

1: Activity\makes
blocking\call
L X

DownloadService Process

Android Services & Local IPC

Douglas C. Schmidt

Challenge: Processing a Long-Running Action

Problems

Android generates an “Application Not
Responding” (ANR) dialog if an app
doesn’t respond to user input within a
short time (—3 seconds)

 Calling a potentially lengthy operation

like downloadlmage() in the main

thread can therefore be problematic

DownloadActivity Process

a @SB % FE S 10540

BuggyApp isn't responding.

Do you want to close it?

1: Activity\makes
blocking\call
L ¥

DownloadService Process

See developer.android.com/training/articles/perf-anr.ntml for more on ANRS

http://developer.android.com/training/articles/perf-anr.html

Android Services & Local IPC

Douglas C. Schmidt

Challenge: Processing a Long-Running Action

Solution

Create a command processor that
encapsulates a download request as
an object that can be passed to a
Service to execute the request

Download
Activity

_Download
%é Service

Command
Processor

onHandlelntent

startService

Android Services & Local IPC

Douglas C. Schmidt

Challenge: Processing a Long-Running Action

Solution

Create a command processor that
encapsulates a download request as
an object that can be passed to a
Service to execute the request

This process works as follows:

* Implement a DownloadService
that inherits from Android’s IntentService

Download

Activit
y _Download
»é Service
Context onHandlelntent

startService

Activity Manager
Service

startService

Android Services & Local IPC

Douglas C. Schmidt

Challenge: Processing a Lon

Solution

o Create a command processor that
encapsulates a download request as
an object that can be passed to a

g-Running Action

Download

Service to execute the request
e This process works as follows:

« Activity creates Intent command designating
DownloadService as target

 Add URL & callback Messenger as “extras”

Activit
y _Download
»é Service
Context onHandlelntent

startService

Activity Manager
Service

startService

Android Services & Local IPC

Douglas C. Schmidt

Challenge: Processing a Long-Running Action

Solution

o Create a command processor that
encapsulates a download request as
an object that can be passed to a
Service to execute the request

e This process works as follows:

 Activity calls startService() with Intent

Download

Activit
y _Download
»é Service
Context onHandlelntent

startService

Activity Manager
Service

startService

Android Services & Local IPC

Douglas C. Schmidt

Challenge: Processing a Long-Running Action

Solution

o Create a command processor that
encapsulates a download request as
an object that can be passed to a

Download

Service to execute the request
e This process works as follows:

« Activity Manager Service starts IntentService,
which spawns internal thread

Activit
y _Download
»é Service
Context onHandlelntent

startService

Activity Manager
Service

startService

Android Services & Local IPC Douglas C. Schmidt

Challenge: Processing a Long-Running Action

Solution

o Create a command processor that
encapsulates a download request as
Download

an object that can be passed to a Activity
Service to execute the request Download

| »é Service
e This process works as follows: Context
onHandlelntent

startService

Activity Manager
Service

startService

* IntentService calls onHandlelntent() to download image in separate thread

See developer.android.com/reference/android/app/IntentService.html for more

http://developer.android.com/reference/android/app/IntentService.html

Android Services & Local IPC Douglas C. Schmidt

Command Processor POSA1 Design Pattern

Intent GoF book contains description of similar Command pattern

» Packages a piece of application functionality—as well as its
parameterization in an object—to make it usable in another context, such
as later in time or in a different thread

Service Request Component

Command

— e

Client —
execute Processor execute function_1

[I
- (1) ‘..I —| execute_request 2 uI —=| function_2
Issue request | '

Execute request

www.dre.vanderbilt.edu/~schmidt/PDF/CommandRevisited.pdf has more info

http://kircher-schwanninger.de/michael/publications/CommandRevisited.pdf

Android Services & Local IPC Douglas C. Schmidt

Command Processor POSA1 Design Pattern
Applicability
- When there’s a need to decouple the decision of what piece of code
should be executed from the decision of when this should happen
- e.g., specify, queue, & execute service requests at different times

Service Request Component

Command

Client —
execute Processor execute function_1

[I
- (1) ‘..I —| execute_request 2 uI —=| function_2
Issue request | '

Execute request

— e

12

Android Services & Local IPC

Douglas C. Schmidt

Command Processor

Applicability

- When there’'s a need to ensure service enhancements don't break
existing code

Client

Service Request

execute

b

Command
Frocessor

@

Tt

Issue request

execute_request

POSA1 Design Pattern

Component
execute function_1
‘T I
@) o == function_2
[

Execute request

13

Android Services & Local IPC

Douglas C. Schmidt

Command Processor

Applicability

POSA1 Design Pattern

- When additional capabilities (such as undo/redo & persistence) must be
Implemented consistently for all requests to a service

Service Request

Client
execute

Command

Frocessor

- Ifi\l)
P
Issue request

execute_request

— e

execute

— |

Component

function_1

@

L=

Execute request

T
—

function_2

14

Android Services & Local IPC Douglas C. Schmidt

Command Processor POSA1 Design Pattern

Structure & Participants

Command

Intent |T——___ | execute/)

T

<<creates>> Concrete
---------------------------- > Command
Creator
parameters...
' execute()
! passes v
! command | uses
' to | parameter
' E from
)
Y \ 4
Execution
Executor [» Context

15

Android Services & Local IPC

Douglas C. Schmidt

Command Processor

Structure & Participants

Command

execute()

Intent +
“e)(l‘fas V23 \

POSA1 Design Pattern

<<creates>> Concrete
------------------------- Command
Creator
parameters...
' .
) execute()
! passes :
! command i uses
H to | parameter
) 1 from
] 1
A 4 \ 4
Execution
Executor [Context
16

Android Services & Local IPC Douglas C. Schmidt

Command Processor POSA1 Design Pattern

Structure & Participants

Command
execute()
Activity \\ <<creates>> Concrete
---------------------------- »| Command
Creator
parameters...
' execute()
! passes ¥
! command | uses
H to | parameter
, 1 from
')
\ A Y
Execution
Executor [> Context

17

Android Services & Local IPC Douglas C. Schmidt

Command Processor POSA1 Design Pattern

Structure & Participants

Command
execute()
<<creates>> Concrete
---------------------------- > Command
Creator
parameters...
' execute()
! passes v
! command E uses
]
to s parameter
/ntept : ' from
Service : ‘
\ 4 h 4
Execution
Executor [» Context

18

Android Services & Local IPC Douglas C. Schmidt

Command Processor POSA1 Design Pattern

Structure & Participants

Command
execute()
<<creates>> Concrete
---------------------------- > Command
Creator
parameters...
' execute()
! passes v
! command | uses
' to | parameter
: Context { from
i 1
\ 4 I~ v
Execution
Executor [Context

19

Android Services & Local IPC

Douglas C. Schmidt

Command Processor

Dynamics

Creator

4 <<Create>>

Concrete Execution

Command Context

set parameters

pass command

POSA1 Design Pattern

Executor

P-.-‘-I -

>

rennnned

Creates the Intent &
call sendService()

(D *eesesSRSesssFF s seRsRTSSY

ex

A

cute (execution context

==

access context

h 4
cese] [|esascech

20

Android Services & Local IPC Douglas C. Schmidt

Command Processor POSA1 Design Pattern

Dynamics

Creator Concrete Execution Executor
—_— Command Context -

4 <<Create>>

set parameters

IntentService

pass command

P-.-‘-I -

>

(D *eesesSRSesssFF s seRsRTSSY

==

execute (execution context

A

access context

cssssssssssssscccsssnannd

h 4
cese] [|esascech

21

Android Services & Local IPC

Douglas C. Schmidt

Command Processor POSA1 Design Pattern

Dynamics

Creator Concrete Execution Executor
- Command Context -

: H H

A <<create>> H :

< : :

set parameters E E E

[] []

g a |

[] []

pass command = . '

. : >

: :

: : L

: ' . 1

' execute (execution context) —

A

access context

cssssssssssssscccsssnannd

h 4
cose] |eafeesch

Call onHandlelntent()
to process the Intent

22

Android Services & Local IPC Douglas C. Schmidt

Command Processor POSA1 Design Pattern

Consequences

+ Client isn’t blocked for duration
of command processing

public void runMessengerDownload(View view) {
String url = editText.getText().toString();

Intent intent = new Intent(this, DownloadService.class);
intent.setData(Uri.parse (url));

Messenger messenger = new Messenger(handler);
intent.putExtra(""MESSENGER", messenger);

startService(intent);

s
t Caller doesn’t block

23

Android Services & Local IPC Douglas C. Schmidt

Command Processor POSA1 Design Pattern

Consequences

+ Allow different users to work with
service in different ways via commands

public void onHandlelntent(Intent intent) {
Bundle extras = intent.getExtras();
IT (extras '= null && extras.get("'MESSENGER') != null)
messengerDownload (intent);
else
broadcastDownload (intent);

24

Android Services & Local IPC Douglas C. Schmidt

Command Processor POSA1 Design Pattern

Consequences

— Additional programming to handle info
passed with commands (cf. Broker)

public void onHandlelntent(Intent intent) {
Bundle extras = intent.getExtras();
IT (extras '= null && extras.get("'MESSENGER') != null)
messengerDownload (intent);
else
broadcastDownload (intent);

25

Android Services & Local IPC Douglas C. Schmidt

Command Processor POSA1 Design Pattern

Consequences

— Supporting two-way operations requires
additional patterns & IPC mechanisms

void sendPath (String outputPath, Messenger messenger) {
Message msg = Message.obtain();
msg.argl = result;
Bundle bundle = new Bundle();
bundle.putString(RESULT PATH, outputPath);
msg.setData(bundle);

messenger .send(msg) ;

26

Android Services & Local IPC Douglas C. Schmidt

Command Processor POSA1 Design Pattern

Known Uses
 Android IntentService

public abstract class Summary: Inherited Constants | Ctors | Methods | Protected

. Methods | Inherited Methods | [Expand All]
|ntE‘ntSEWICE Added in API level 3

« Many Ul toolkits extends e
e InterViews, ET++, Ll
android_content.Context
MaCApp SW|ng AWT Landroid.content.ContextWrapper
’ ’ ’ L.android.app.Service
etC Landroid.app.IntentService
. I_nterpreters for command- Class Overview
line shells
° Java RU n nab I e interface IntentService is a base class for services that handle asynchronous requests

(expressed as Intents) on demand. Clients send requests through
startService (Intent) calls; the service is started as needed, handles each
Intent in turn using a worker thread, and stops itself when it runs out of work.

This "work queue processor” pattern is commonly used to offload tasks from an
application's main thread. The IntentService class exists to simplify this pattern
and take care of the mechanics. To use it, extend IntentService and implement
onHandleIntent (Intent). IntentService will receive the Intents, launch a worker
thread, and stop the service as appropriate.

developer.android.com/reference/android/app/IntentService.html

http://developer.android.com/reference/android/app/IntentService.html

Android Services & Local IPC Douglas C. Schmidt

summary
o Command Processor provides a relatively CLIENT SERVER
straightforward means for passing commands = =
asynchronously between threads and/or REQUEST1 o
processes in concurrent & networked software REQUEST 2 >
RESPONSE 1
< ________
REQUEST 3
>
RESPONSE 2
< _________
RESPONSE 3
«---see- i

www.dre.vanderbilt.edu/—schmidt/PDF/CommandRevisited.pdf has more info

http://www.dre.vanderbilt.edu/~schmidt/PDF/CommandProcessor.pdf

Android Services & Local IPC:
The Command Processor Pattern (Part 2)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software
Integrated Systems

V

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Android Services & Local IPC Douglas C. Schmidt

Learning Objectives in this Part of the Module

Understand how Command Processor is applied in Android

Intent

Intent
Service
1
Client -@ o élonCreate() @
startService() _Send
Intent onStartCommand()
|
|4 queue {}
Service Intent
Handler @ Myintent
_}é sendMessage() |€ Service
: | ;
handleMessage()
@ ?9 onHandlelntent() @
dequeue !
intent process intent

30

Android Services & Local IPC

Douglas C. Schmidt

Command Processor

Implementation

» Define an abstract class for
command execution that will be
used by the executor

 Typically define an execute()
operation

POSA1 Design Pattern

public class Intent implements
Parcelable, Cloneable {

31

Android Services & Local IPC Douglas C. Schmidt

Command Processor POSA1 Design Pattern

Implementation public class Intent implements
Parcelable, Cloneable {

public Intent setData(Uri data)

{/7* ... */}
e Add state which concrete
commands need during their public Uri getData()
execution to the context 17 ... * }
 Make the context available to oublic Intent putExtra
the concrete command (String name, Bundle value)

v* ... ™}

public Object getExtra
(String name)
> ... */ }

32

Android Services & Local IPC Douglas C. Schmidt

Command Processor POSA1 Design Pattern

Implementation public class DownloadActivity

extends Activity {

public void onClick(View v) {
Intent Intent = new
Intent(DownloadActivity.this,
DownloadService.class);

* Define & implement the creator
e e.g., using patterns like
Abstract Factory or Factory

Method startService(intent);
¥

Iintent.setData
(Uri.parse(userinput);

33

Android Services & Local IPC

Douglas C. Schmidt

Command Processor

Implementation

» Define the context

» If necessary allow it to keep
references to command
objects, but be aware of
lifecycle issues

POSA1 Design Pattern

public abstract class Context {
public abstract void
sendBroadcast(Intent intent);

public abstract Intent
registerReceiver
(BroadcastReceilver receiver,
IntentFilter filter);

34

Android Services & Local IPC Douglas C. Schmidt

Command Processor POSA1 Design Pattern

Implementation public class DownloadService
extends IntentService {

protected void
onHandlelntent(Intent iIntent)
{

downloadlmage(intent);

}

e Implement specific command }
functionality in subclasses:

* Implementing the execute()
operation, adding necessary
attributes

35

Android Services & Local IPC

Douglas C. Schmidt

Command Processor

Applying Command Processor in Android

POSA1 Design Pattern

(Some) steps involved in the Android implementation of Command Processor pattern

DownloadActivity Process

/

DownloadActivity

DownloadService Process

- N

5: Return URI

DownloadService

|

startService()

-

1: Sent Intent to
Activity Manager
Service

2: Activity Manager
Service starts
the Download
Service if it’s not
already running
_—

onHandlelntent()

image & reply
via Messenger

T 4: Download 95

3: IntentService
base class queues
the Intent & calls
onHandlelntent(),
which runs in a

separate thread

/Activity Manager Service\)

Other patterns are involved here: Activator, Messaging, Result Callback, etc.

Android Services & Local IPC Douglas C. Schmidt

Command Processor POSA1 Design Pattern
Applying Command Processor in Android

(Portion of) the DownloadActivity implemented using the Command
Processor pattern

public void runDownloadImage(View view) {
URL url = new URL(image url._getText().toString())
Intent intent = new Intent(this,

J DownloadService.class);
Make Intent “command”

intent.putExtra(DownloadService.MESSENGER,
new Messenger(handler))
intent.putExtra(DownloadService.URL, url);

startService(intent);

}

L Issue request to command processor

This code runs in the DownloadActivity process

Android Services & Local IPC Douglas C. Schmidt

Command Processor POSA1 Design Pattern

Applying Command Processor in Android

(Portion of) the DownloadService implemented using the Command
Processor pattern Command processor executes the request

public class DownloadService extends IntentService {

protected void onHandlelntent(Intent intent) {
Bundle extras = i1ntent.getExtras();
URL url = (URL)extras.get(URL);
Messenger messender (Messenger)extras.get(MESSANGER);

// Download image at designated URL & send
// reply back to Activity via messenger callback

downloadImage(url, messenger);

This code runs in a thread in the DownloadService process

Android Services & Local IPC Douglas C. Schmidt

Summary
Design Patterns

« The Android Intent Service framework implements | ;oo resbe
Object-Oriented Seftware

the Command Processor pattern & Is used to cich G
process Intents in a background Thread

Ralph Jolinson
ohn Vlissides

D TVNOISSHHOUD ATTSIM-NOSIOOY

Intent

=}
z
o
@
%

Intent
Service

Client -@ o %IonCreate() @ IIJﬁ

~ PATTERN-ORIENTED
. SOFTWARE
startService() _Send hﬁ ARCHITECTURE
Intent onStartCommand|() Asstem ot paterns
| queue 2}
- intent ‘ :
Service : - o
GIWILEY a
Handler @ Mylntent :
é sendMessage() |€ Service
— | |
handleMessage()
T 1

@ —= onHandlelntent() | (5) ek Ty
dequeue ' T
intent process intent e

39

Android Services & Local IPC:
Overview of Bound Services

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software
Integrated Systems

V

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Android Services & Local IPC Douglas C. Schmidt

Learning Objectives in this Part of the Module

e Understand how what a Bound (camw) AT
Service is & what hook methods it \m— ane——'
. . . v v
defines to manage its various onCreate) onGreatel)
lifecycle states " |
onStartCommand() onBindi()
R
/ \ Clients are
Activity Service b::rl::! :,
The service is stopped All clients unbind by calling

by itself or a client unbindService()
\ v

onUnbind()

Broad_cast Content J,
RECEIVEI‘ Provider onDestroy) onDestroy()
\\DVM & Linux Procesy (g Sarvien \ (gSeice,)

. 4 " y

Unbounded Bounded
service service

We'll emphasize commonalities
& variabilities in our discussion

Android Services & Local IPC Douglas C. Schmidt

Interfacing with a Bound Service

Call to
. . bindService()
* A Bound Service offers components an interface that :
clients can use to interact with the Service y
o . onCreate()
* This interface can be generic |
* e.g., using Messengers & Handlers for onBind()
Inter- or intra-process communication l
Clients are
bound to
service
Messenger |
Sen0 - ---- : i
! v
: Handler onUnbind()
—— - handIeMessage()l l
' onDestroy()
Download |
Activity Download & !
Service Do

-‘/'

42

Android Services & Local IPC

Douglas C. Schmidt

* A Bound Service offers components an interface that
clients can use to interact with the Service

* This interface can also be specific

* e.g., using the Android Interface Definition
Language (AIDL) for inter- or intra-process

Interfacing with a Bound Service

communication

interface IDownload {
String downloadlmage(in Uri uri);

}

[Download

Activity

Download
Service

]

Call to
~ bindService()

T

v
onCreate()

.

onBind()

:

Clients are
bound to
service
:

All clients unbind by calling
unbindService()

v

onUnbind()

:

onDestroy()

v

Service
shut down

.-/I

43

Android Services & Local IPC Douglas C. Schmidt

Interfacing with a Bound Service,

Call to

* A Bound Service offers components an interface that * J
clients can use to interact with the Service
onCreate()
onBind()
* Both approaches use the Binder RPC mechanism :
.. " Clients are
* This implements the Broker & Proxy patterns ~ bound to
Client Client-side Broker Server-side Broker Object Applicat All cllont ; e "
ien [ication clients unbin callin
et Proxy request L} | invoke dapler Component unbindSewicg() :
rovor 1} [\ 5] Jsena] e 1A v
— —| receive k 'l send]"'5:— onUnbind()
discover client proxy >{ scorr : .ﬂ?ﬂ register component l
Network onDestroy{)
Download I
Activity Download y
Service (e 000)
\ shut down “
. o/

LINUX KERNEL

Display Driver Camera Driver Bluetooth Driver Sh:lreg:lirﬂory Binder (IPC) Driver

Audio Power

USB Driver Keypad Driver WiFi Driver Drivers Management

Android Services & Local IPC Douglas C. Schmidt

Launching a Bound Service

Call to
: : : bindService()
* A Bound Service allows App components to bind to it by 1
calling bindService() to create a “persistent” connection y
onCreate()
onBind()
v
Intent Intent = new Clients are
Intent(IDownloadSync.class.getName()); b::r':lde:o
bindService(intent, this.conn, ‘ .
Context.BIND AUTO_ CREATE); All clients unbind by calling
unbindService()
v
onUnbind()
onDestroy()
Download |
Activity Download Jpu—
§ (Service
Service Mhoteiziey

-‘/'

developer.android.com/quide/components/services.html#CreatingBoundService

http://developer.android.com/guide/components/services.html#CreatingBoundService

Android Services & Local IPC Douglas C. Schmidt

Launching a Bound Service

Call to
. . . bindService()
* A Bound Service allows App components to bind to it by :
calling bindService() to create a “persistent” connection y
_ _] .] onCreate()
* The client must provide ServiceConnection object to |
monitor the connection with the Service p—
v
Intent intent = new Clients are
Intent(IDownloadSync.class.getName()); bound to
- - - - service
bindService(intent, this.conn, : |
Context.BIND AUTO_ CREATE); All clients unbind by calling
unbindService()
v
onUnbind()
onDestroy()
Download :
Activity Download r—
- (Service
Service e

.-/I

46

Android Services & Local IPC Douglas C. Schmidt

Connecting a Bound Service

Call to
: : : : bindServi
* When the client calls bindService() Android starts the - , =
Service & invokes the Service’s onCreate() & onBind()
hook methods onCrzate(]
* If the Service isn’t already running it will be activated
:
Clients are
p | bound to
IDownload.Stub binder; e S00VICE
Class DownloadService extends Service { All clients unbind by calling
public void onCreate(Bundle savedlnstance) { unbindService()
binder = new IDownload.Stub() { v
public String downloadlmage(String urlValue) onUnbind()
{/* ... */} l
onDestroy()
Download -
Activity Download r—
: Servi
Service e

See www.dre.vanderbilt.edu/—schmidt/PDF/Activator.pdf for info on Activator

http://www.dre.vanderbilt.edu/~schmidt/PDF/Activator.pdf

Android Services & Local IPC Douglas C. Schmidt

Connecting a Bound Service

Call to

. . . . bindServi
* When the client calls bindService() Android starts the - i —
Service & invokes the Service’s onCreate() & onBind()
hook methods onCrzate(]
» onBind() returns an IBinder object that defines the API !
for communicating with the Bound Service Clients are
bound to
(: service
. ;
public IBinder onBind(Intent intent) All clients unbind by calling
{ unbindService()
return this.binder; v
} onUnbind()
Download i
Activity Download r—
Service B bt R

.-/I

An interesting callback-driven protocol is used to establish a connection

Android Services & Local IPC

Douglas C. Schmidt

Connecting a Bound Service

* When the client calls bindService() Android starts the

Service & invokes the Service’s onCreate() & onBind()
hook methods

* The client needs to implement an onServiceConnected()
hook method to get a proxy to the IBinder

[1download syncSvc;
ServiceConnection conn = new ServiceConnection() {
public void onServiceConnected
(ComponentName className, IBinder i1Svc) {

Call to
~ bindService()

|

:

Clients are
bound to
service
I

All clients unbind by calling

unbindService()

v
syncSvc = IDownload.Stub.aslInterface(iSvc); onUnbind(
; l
/ onDestroy()
Download :
Activity Download !
Service Do
\Y 49

Android Services & Local IPC Douglas C. Schmidt

Interfacing with a Bound Service

Call to
. . bindService()
* A Bound Service offers components an interface that I
clients can use to interact with the Service, e.g.: y
] onCreate()
* Sending requests |
* Getting results & onBind(
* Conversing across processes via IPC
Clients are
bound to
service

final String pathName = All clients unbind by calling

syncSvc.downloadImage(url); unbindService()
\ *
onUnbind()
Blocking call l
onDestroy()
Download i
Activity Download —
Service Do

-‘/'

50

Android Services & Local IPC Douglas C. Schmidt

Interfacing with a Bound Service

Call to
* A Bound Service offers components an interface that b'"ds':"'“o
clients can use to interact with the Service, e.g.: y
. onCreate()
* Sending requests |
* Getting results & onBind(

» Conversing across processes via IPC

rIDownIoad.Stub binder = new IDownIoad.Stub()1
{

public String downloadlmage(String url) { A"“ﬁﬁ&g;iggm"g

return downloadImageFromURL(url, ‘

DOWNLOADED_FILE_NAME_PREFIX) ; onUnbind(

\ } l
Download % \ Snbss TN
[Activity DownloadJ p— - sev'l
e |

51

Android Services & Local IPC Douglas C. Schmidt

Stopping a Bound Service

Call to
. . . . bindServi
 When a Bound Service is launched, it has a lifecycle that's - i —
depends of the component(s) that access it y
. onCreate()
e i.e., it doesn’t run in the background indefinitely |
. . Bind
When a client is done . in !
Interacting with the
. ; Clients are
service, It calls After there are no bound to
; ; servi
unbinaservice() to clients bound to the ' —
unbind service it is destroyed o
v
\J

Activity Download -
Service it

developer.android.com/guide/components/bound-services.html#Lifecycle

http://developer.android.com/guide/components/bound-services.html#Lifecycle

Android Services & Local IPC

Douglas C. Schmidt

Hybrid Started & Bound Service

In no particular order,
onStartCommand() and

* It is possible to define “hybrid” & me i
models that combine Bound &

Started Services
 If a Bound Service implements
onStartCommand() it won't be I
" Service running

L d
onBind()

Mo

anlUnbind()
returned true?

Yes

v

onRebind()

destroyed when it is unbound [Seyicerinning |

\, bound 4

from all clients -- |
All clients unbind by calling
unbindServicel()

v

onUnbind() ﬁ

s service also
stopped via stopSelf()
or stopService()?

onDestroy() - Yeg

_ L
F Y
| Service III
\ shut down /
A 4

Mo

Lifecycles

Aclient calls
bindService()

developer.android.com/guide/components/bound-services.html#Lifecycle

http://developer.android.com/guide/components/bound-services.html#Lifecycle

Android Services & Local IPC Douglas C. Schmidt

Hybrid Started & Bound Service Lifecycles

In no particular order, -
n anlUnbind()

It is possible to define “hybrid” i e i No —<_etumed true?
models that combine Bound &
Started Services “;
L 4
onBind() onRebind() &nccigr;:vti-?;?]
- 'r - —
j_\ 5":.’:’5:',3 ;:= -
. - A -

|
All clients unbind by calling

* If you return true when the Unbingervioo(
v

system calls onUnbind() the o~

onRebind() method will be .__,\\\l

called the next time a client 2 service A
/smplpéd via smlpsar-:]

Mo

b|ndS tO the SeI’Vice or stopService()?
* Instead of receiving a call Y
. onDestroy() - Yeg
to onBind() |
4 . =X
|' Service -III
\ shut down ;

developer.android.com/guide/components/bound-services.html#Lifecycle

http://developer.android.com/guide/components/bound-services.html#Lifecycle

Android Services & Local IPC

Douglas C. Schmidt

5: Assign Proxy to
local variable

Protocol for Bound Service Interactions

* A protocol is used to interact between Activities & Bound Services

Client Process

/

Activity

Binder IPC Mechanism

Server Process

~

6: Call the method
doSomething() via

Service

7: Stub dispatches
to method &

— — — — — — — — — —

Proxy

1: Bind to Service

—— — — — —)

onBind()

returns result

3: Return reference

bindService()

ServiceConnection

onServiceConnected() «

2: Start Bound
Service process if
it's not already
running

to object that
implements the
IBinder interface

ISomeBinder

4: Downcast
to Proxy

doSomething()

5

Binder (IPC) Driver

Many patterns are involved here: Broker, Proxy, Activator, Adapter, etc.

Android Services & Local IPC Douglas C. Schmidt

Client Bound Service Interactions

* To bind to a service from your client, you must perform the following steps:
1. Implement ServiceConnection & override its

Client Process

/ \ two callback methods:
Activity e onServiceConnected() — Android calls this to
, | mDoSomething | deliver the IBinder returned by the
“““““““ service's onBind() method
bindService() » onServiceDisconnected() — Android calls this

when the connection to the service is
unexpectedly lost

_ * e.g., when the service has crashed or has
onServiceConnected() been killed (not called with client calls

onServiceDisConnected() unbindserVice())

. =/

ServiceConnection

56

Android Services & Local IPC Douglas C. Schmidt

Client Bound Service Interactions

* To bind to a service from your client, you must perform the following steps:

/

Client Process

Activity 2. Call bindService(), passing
"mboSomething | the ServiceConnection implementation
bindService()

: Assign Proxy to
local variable

ServiceConnection

onServiceConnected()

onServiceDisConnected()

(N >/

57

Android Services & Local IPC

Douglas C. Schmidt

Client Bound Service Interactions

* To bind to a service from your client, you must perform the following steps:

Client Process

/ 1\

Activity

— — — — — — — — — —

bindService()

ServiceConnection

onServiceConnected()

onServiceDisConnected()

(. =/

3. When the system calls your
onServiceConnected() callback method, you

can begin making calls to the service, using the
methods defined by the interface

58

Android Services & Local IPC Douglas C. Schmidt

Client Bound Service Interactions

* To bind to a service from your client, you must perform the following steps:

Client Process

)

Activity

— — — — — — — — — —

unBindService()

ServiceConnection
4. To disconnect from the service,

onServiceConnected() call unbindService()
onServiceDisConnected() * When a client is destroyed, it is unbound
\\ j from the Service automatically

59

Android Services & Local IPC Douglas C. Schmidt

Client Bound Service Interactions

Client Process

/ 1\

Activity

— — — — — — — — — —

unBindService()

ServiceConnection

onServiceConnected()

onServiceDisConnected()

(. =/

* Always unbind when you're done interacting with the service or when your
activity pauses so that the service can shutdown while its not being used

60

Android Services & Local IPC Douglas C. Schmidt

Server Bound Service Interactions

e A Bound Service must perform the following steps when a client binds to it:

* When Android calls the Service's onBind() Server Process

method it returns an IBinder for / \
Interacting with the Service

Service
“mBinder |

Bind 3: Return reference
onBind() to object that

implements the
IBinder interface

ISomeBinder

doSomething()

5
< —

61

Android Services & Local IPC Douglas C. Schmidt

Server Bound Service Interactions

e A Bound Service must perform the following steps when a client binds to it:
 When Android calls the Service's onBind()

Server Process

method it returns an IBinder for / N\
Interacting with the Service Service
e The binding is asynchronous | mBinder |
* i.e., bindService() returns
immediately & does not return onBind()

the IBinder to the client

ISomeBinder

doSomething()

5
< >

62

Android Services & Local IPC Douglas C. Schmidt

Server Bound Service Interactions

e A Bound Service must perform the following steps when a client binds to it:

 When Android calls the Service's onBind() Server Process
method it returns an IBinder for / \
Interacting with the Service Service
| mBinder |

|
L —— —— o

e To receive the IBinder, the client
must create an instance of onBind()
ServiceConnection & pass it to
bindService()

e ServiceConnection implements
the onServiceConnected() |
callback method that Android >
iInvokes to deliver the IBinder \\ /

ISomeBinder

doSomething()

63

Android Services & Local IPC

Douglas C. Schmidt

Communicating with Bound Services

* When creating a Bound Service, you must provide an IBinder via an interface
clients can use to interact with the Service via one of the following

Client Process

\

/

Activity

— — — — — — — — — —

bindService()

ServiceConnection

onServiceConnected()

.

_/

* Extending the Binder class

 If your service runs in the same
process as the client you can
extend the Binder class & return
from onBind()

Server Process

~

/

Service

—— — — — —)

onBind()

ISomeBinder

doSomething()

5

.

64

Android Services & Local IPC Douglas C. Schmidt

Communicating with Bound Services

* When creating a Bound Service, you must provide an IBinder via an interface
clients can use to interact with the Service via one of the following

Client Process Server Process

/ — \ e Using a Messenger / N

Activity _ Service
_________ e Create an interface for the e

—————————— Service with a Messenger that | mBinder |
allows the client to send

bindService() commands to the Service across onBind()
Processes
ServiceConnection e Doesn’t require thread-safe ISomeBinder
onServiceConnected() components doSomething()

5
. _/ < /

65

Android Services & Local IPC Douglas C. Schmidt

Communicating with Bound Services

* When creating a Bound Service, you must provide an IBinder via an interface
clients can use to interact with the Service via one of the following

Client Process Server Process

—————) - 2\

Activity]) Service
otieimspnise * Using Android Interface || _—_____
, mbosomething | Definition Language (AIDL) | mBinder |
bindServicel e AIDL performs all the work onBind0
to decompose objects into
_ _ primitives that Linux can _
ServiceConnection understand & marshal them ISomeBinder
onServiceConnected() ?IS:E)OSS Processes to perform doSomething()
| 5
e Does require thread-safe
\) components \ /

66

Android Services & Local IPC Douglas C. Schmidt

Summary

» Apps can use Services to implement long- £ . | p
running operations in the background | stanServics) . bindServics)

onCreate() onCreate()

} v

onStartCommand() anBind()

B S P

Clients are
Service S
\ / 5 service
The service is stopped All clients unbind by calling
by itself or a client unbindService()

at@OFHEN 2 FE N S 1054m
E ThreadedDownload

running

http://www.dre.vanderbilt.edu/

Enter URL: | schmidt/ka.png

Run Run Run Reset
Runnable Messages Async Image

v

. onUnbind()
[Download Activity] ¢
onDestroy() onDestray()
R v
' (Service
shutdown | . shutdown
4 -
] Unbounded Bounded
[Download Service] service service

67

Android Services & Local IPC Douglas C. Schmidt

Summary

Call to | | Call to

| startService) . bindService)
« Started Services are simple to program v v
onCreate() onCreate()
onStanCommand() onBind()
/' Clients :
a @G Ban $ T Bh % @ 10:54em Semce Hfl:‘mnt;e
E ThreadedDownload ; mnnlm . service
BB htlp.f/www.dre.vanderbi\t.edu/ h) x .
~schmidt/ka.png The service is stopped All clients unbind by calling
Run Run Run Reset h-?. iTEE ri:l" a '{:':E!r'lt unbincSEﬁrice{]
Runnable Messages Async Image *
. onUnbind()
[Download Activity] |
onDestroy() onDestray()
(‘I.' f '&‘ W |BE ‘..I'|
shut down _,-I shut down /
d b v
Unbounded Bounded
[Download Service] service service

68

Android Services & Local IPC Douglas C. Schmidt

Summary

Call to | | Call to

. startService() _ bindService()
onCreate() onCreate()
* Bound Services provide more powerful | |
communication models onStartCommand() onBind()
AL @AM %7 E N @ 105 [Service - C;E:Iintz :;e
ﬂ ThreadedDownload A y mnnlm service
BB htip.f/www.dre.vanderbi\t.edu/ . . ‘~ .
~_~schmidy/ka.png The service is stopped All clients unbind by calling
Run Run Run | Reset by itsalf or a client unbindService()
Runnable Messages Async Image
v
. onUnbind()
[Download Activity] |
onDestroy() onDestray()
| Service \ /' Service
\ shut down \ shut down
'._k\- -/. \-\-
Unbounded Bounded
[Download Service] service service

69

Android Services & Local IPC Douglas C. Schmidt

sSummary
Call to - | Call to
startService() : : bindService() :
v oy
onCreate() onCreate()
: :
onStartCommand() onBind()
« Examples of Android Bound Services: R 2 | ﬁ
. —_..__ - boundto
* BluetoothHeadsetService _ running _ service
* Provides Bluetooth Headset & Hde s b
Handsfree as Service in Phone App '
. i onUnbind()
» MediaPlaybackService |
* Provides "background" audio onDestroy() onDestroy()
playback capabilities PR T #
i i I" Service \ [Service |
* Exchange Emall Services ey -
 Manage email operations, such as Unbounded Bounded
service service

sending messages

See packages/apps in Android source code for many services

	Slide Number 1
	Learning Objectives in this Part of the Module
	Challenge: Processing a Long-Running Action
	Challenge: Processing a Long-Running Action
	Challenge: Processing a Long-Running Action
	Challenge: Processing a Long-Running Action
	Challenge: Processing a Long-Running Action
	Challenge: Processing a Long-Running Action
	Challenge: Processing a Long-Running Action
	Challenge: Processing a Long-Running Action
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Summary
	Slide Number 29
	Learning Objectives in this Part of the Module
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Command Processor POSA1 Design Pattern
	Summary
	Slide Number 40
	Learning Objectives in this Part of the Module
	Interfacing with a Bound Service
	Interfacing with a Bound Service
	Interfacing with a Bound Service
	Launching a Bound Service
	Launching a Bound Service
	Connecting a Bound Service
	Connecting a Bound Service
	Connecting a Bound Service
	Interfacing with a Bound Service
	Interfacing with a Bound Service
	Stopping a Bound Service
	Hybrid Started & Bound Service Lifecycles
	Hybrid Started & Bound Service Lifecycles
	Protocol for Bound Service Interactions
	Client Bound Service Interactions
	Client Bound Service Interactions
	Client Bound Service Interactions
	Client Bound Service Interactions
	Client Bound Service Interactions
	Server Bound Service Interactions
	Server Bound Service Interactions
	Server Bound Service Interactions
	Communicating with Bound Services
	Communicating with Bound Services
	Communicating with Bound Services
	Summary
	Summary
	Summary
	Summary

