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• Understand the Activator pattern 

 
 

Learning Objectives in this Part of the Module 

www.dre.vanderbilt.edu/~schmidt/PDF/Activator.pdf 

http://www.dre.vanderbilt.edu/~schmidt/PDF/Activator.pdf
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Context 

• Resource constrained & highly  
dynamic environments 
• Random-access memory (RAM) 

is a valuable resource in any  
software environment 

Challenge: Minimizing Resource Utilization 

Small Memory Device 
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Context 

• Resource constrained & highly  
dynamic environments 
• Random-access memory (RAM) 

is a valuable resource in any  
software environment 

• It's even more valuable on a  
mobile OS like Android where  
physical memory is often  
constrained 

Challenge: Minimizing Resource Utilization 

Small Memory Device 
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Small Memory Device 

Problem 
• It‘s not feasible to have all App  

Service implementations running  
all the time since this ties up end- 
system resources unnecessarily 

Challenge: Processing a Long-Running Action 

developer.android.com/training/articles/memory.html has more info 

http://developer.android.com/training/articles/memory.html
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Challenge: Processing a Long-Running Action 
Solution 
• Apply the Activator pattern  

to activate & deactivate  
Android Services  
automatically 
• If your app needs a Service  

to perform work in the 
background, don’t keep it 
running unless it's actively 
performing a job 

 
 

ActivityManagerService 

ServiceMap 

Service 

bindService() 

Process.start() 

Client 1 

2 

3 

4 
someMethodCall() 

mServicesByNamePerUser 

mServicesByIntentPerUser 
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Challenge: Processing a Long-Running Action 
Solution 
• Apply the Activator pattern  

to activate & deactivate  
Android Services  
automatically 
• If your app needs a Service  

to perform work in the 
background, don’t keep it 
running unless it's actively 
performing a job 

• Be careful to never leak  
your Service by failing to stop  
it when its work is done 

 
 

developer.android.com/training/articles/memory.html#Services has more info 

ActivityManagerService 

ServiceMap 

Service 

bindService() 

Process.start() 

Client 1 

2 

3 

4 
someMethodCall() 

mServicesByNamePerUser 

mServicesByIntentPerUser 

http://developer.android.com/training/articles/memory.html#Services
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Activator                      POSA4 Design Pattern 
Intent 
• Activator automates scalable on-demand activation & deactivation of 

service execution contexts to run services accessed by many clients 
without consuming excessive resources 

www.dre.vanderbilt.edu/~schmidt/PDF/Activator.pdf has more info 

http://kircher-schwanninger.de/michael/publications/CommandRevisited.pdf
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Applicability 
• When services in a system should only consume resources when they 

are accessed actively by clients 

Activator                      POSA4 Design Pattern 
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Applicability 
• When services in a system should only consume resources when they 

are accessed actively by clients 
• When clients should be shielded from where services are located, how 

they are deployed onto hosts or processes, & how their lifecycle is 
managed 

Activator                      POSA4 Design Pattern 
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Structure & Participants 
 

Activity 

Activator                      POSA4 Design Pattern 
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Structure & Participants 
 

Intent 

Activator                      POSA4 Design Pattern 



Android Services & Local IPC Douglas C. Schmidt 

13 

Structure & Participants 
 

Context 

Activator                      POSA4 Design Pattern 
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Structure & Participants 
 

Activity 
Manager 
Service 

Activator                      POSA4 Design Pattern 
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Structure & Participants 
 ServiceMap 

Activator                      POSA4 Design Pattern 
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Structure & Participants 
 

Linux Process 

Activator                      POSA4 Design Pattern 
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Structure & Participants 
 

IntentService 

Activator                      POSA4 Design Pattern 
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Dynamics 
 

Activator                      POSA4 Design Pattern 
The Client uses the Activator 

to get service access 
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Dynamics 
 

When incoming requests arrive, the Activator looks up 
whether a target object is already active & if the object is 

not running it activates the Service Execution Context 

Activator                      POSA4 Design Pattern 
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Dynamics 
 

Activator                      POSA4 Design Pattern 

An Activator can activate & passivate a 
Service running in a server after each 

method call, each transaction, etc 
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Dynamics 
 

Activator                      POSA4 Design Pattern 
The Activation Table 
stores associations 
between services & 

their physical location 
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Dynamics 
 

Activator                      POSA4 Design Pattern 

A Service implements a specific type of 
functionality that it provides to clients 
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ActivityManagerService 

ServiceMap 

Consequences 
+ More effective resource  

utilization 
• Servers can be spawned  

“on-demand,” thereby  
minimizing resource  
utilization until clients  
actually require them 

 Service 

bindService() 

Process.start() 

Client 1 

2 

3 

4 
someMethodCall() 

Activator                      POSA4 Design Pattern 

mServicesByNamePerUser 

mServicesByIntentPerUser 
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Consequences 
+ More effective resource  

utilization 
+ Coarse-grained concurrency 

• By spawning server  
processes to run on  
multi-core/CPU computers  

 
 

Activator                      POSA4 Design Pattern 
ActivityManagerService 

ServiceMap 

Service 

bindService() 

Process.start() 

Client 1 

2 

3 

4 
someMethodCall() 

mServicesByNamePerUser 

mServicesByIntentPerUser 
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Consequences 
+ More effective resource  

utilization 
+ Coarse-grained concurrency 
+ Modularity, testability, & 

reusability 
• Application modularity &  

reusability is improved by  
decoupling server  
implementations from  
the manner in which the  
servers are activated 
 

 

Activator                      POSA4 Design Pattern 
ActivityManagerService 

ServiceMap 

Service 

bindService() 

Process.start() 

Client 1 

2 

3 

4 
someMethodCall() 

mServicesByNamePerUser 

mServicesByIntentPerUser 
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Consequences 
– Lack of determinism & 

ordering dependencies 
• Hard to determine or  

analyze the behavior of  
an app until its components  
are activated at runtime 

 
 

 

Activator                      POSA4 Design Pattern 
ActivityManagerService 

ServiceMap 

Service 

bindService() 

Process.start() 

Client 1 

2 

3 

4 
someMethodCall() 

mServicesByNamePerUser 

mServicesByIntentPerUser 
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Consequences 
– Lack of determinism & 

ordering dependencies 
– Reduced security & reliability 

• An application that uses  
Activator may be less  
secure or reliable than  
an equivalent statically- 
configured application  

 
 

 
 

Activator                      POSA4 Design Pattern 
ActivityManagerService 

ServiceMap 

Service 

bindService() 

Process.start() 

Client 1 

2 

3 

4 
someMethodCall() 

mServicesByNamePerUser 

mServicesByIntentPerUser 
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Consequences 
– Lack of determinism & 

ordering dependencies 
– Reduced security & reliability 
– Increased run-time overhead & 

infrastructure complexity 
• By adding levels of abstraction  

& indirection when activating  
& executing components  

 
 

 
 

Activator                      POSA4 Design Pattern 
ActivityManagerService 

ServiceMap 

Service 

bindService() 

Process.start() 

Client 1 

2 

3 

4 
someMethodCall() 

mServicesByNamePerUser 

mServicesByIntentPerUser 
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Known Uses 
• UNIX Inetd “super server” 

• Internal services are fixed at  
static link time 
• e.g., ECHO & DAYTIME 

 

Activator                      POSA4 Design Pattern 

Internal 
service 

Internal 
service 

Internal 
service 
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Known Uses 
• UNIX Inetd “super server” 

• Internal services are fixed at  
static link time 

• External services can be  
dynamically reconfigured  
• e.g., FTP, TELNET, & HTTP 

Activator                      POSA4 Design Pattern 

Internal 
service 

Internal 
service 

Internal 
service 

See en.wikipedia.org/wiki/Inetd for more on Inetd 

http://en.wikipedia.org/wiki/Inetd
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Known Uses 
• UNIX Inetd “super server” 
• CORBA Implementation Repository 

Activator                      POSA4 Design Pattern 

ImR (ringil:5000) Client 

ringil:4500 plane.exe  airplane_poa 
server.exe poa_name ringil:5500 iiop://ringil:5000/poa_name/object_name 

Server (ringil:5500) 

1. some_request 

4. LOCATION_FORWARD 

2. ping 
3. is_running 

6. some_response 

5. some_request 

2.1 start 

iiop://ringil:5500/poa_name/object_name 
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Known Uses 
• UNIX Inetd “super server” 
• CORBA Implementation Repository 
• Android ActivityManagerService 

Activator                      POSA4 Design Pattern 

ActivityManagerService 

ServiceMap 
bindService() 

Client 1 

mServicesByNamePerUser 

mServicesByIntentPerUser 
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Known Uses 
• UNIX Inetd “super server” 
• CORBA Implementation Repository 
• Android ActivityManagerService 

Activator                      POSA4 Design Pattern 

ActivityManagerService 

ServiceMap 

Service 

bindService() 

Process.start() 

Client 1 

2 

mServicesByNamePerUser 

mServicesByIntentPerUser 
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Known Uses 
• UNIX Inetd “super server” 
• CORBA Implementation Repository 
• Android ActivityManagerService 

Activator                      POSA4 Design Pattern 

ActivityManagerService 

ServiceMap 

Service 

bindService() 

Process.start() 

Client 1 

2 

3 
someMethodCall() 

mServicesByNamePerUser 

mServicesByIntentPerUser 
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Known Uses 
• UNIX Inetd “super server” 
• CORBA Implementation Repository 
• Android ActivityManagerService 

Activator                      POSA4 Design Pattern 

ActivityManagerService 

ServiceMap 

Service 

bindService() 

Process.start() 

Client 1 

2 

3 

4 
someMethodCall() 

mServicesByNamePerUser 

mServicesByIntentPerUser 
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Summary 

• Activator frees clients from the responsibility of (re)activating the resources 
they use 
• It appears to them as if all resources were always (virtually) available 
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Summary 

www.dre.vanderbilt.edu/~schmidt/PDF/Activator.pdf has more info 

• Activator frees clients from the responsibility of (re)activating the resources 
they use 

• Activator also ensures that (re)activating a resource incurs minimal overhead 
because it maintains information about how to optimize this process 
• e.g., an activator could reload the resource’s persistent state & reacquire 

the needed computing resources in parallel, thereby speeding resource 
initialization 

http://kircher-schwanninger.de/michael/publications/CommandRevisited.pdf
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