
Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

Android Services & Local IPC:
The Activator Pattern (Part 1)

mailto:d.schmidt@vanderbilt.edu

Android Services & Local IPC Douglas C. Schmidt

2

• Understand the Activator pattern

Learning Objectives in this Part of the Module

www.dre.vanderbilt.edu/~schmidt/PDF/Activator.pdf

http://www.dre.vanderbilt.edu/~schmidt/PDF/Activator.pdf

Android Services & Local IPC Douglas C. Schmidt

3

Context

• Resource constrained & highly
dynamic environments
• Random-access memory (RAM)

is a valuable resource in any
software environment

Challenge: Minimizing Resource Utilization

Small Memory Device

Android Services & Local IPC Douglas C. Schmidt

4

Context

• Resource constrained & highly
dynamic environments
• Random-access memory (RAM)

is a valuable resource in any
software environment

• It's even more valuable on a
mobile OS like Android where
physical memory is often
constrained

Challenge: Minimizing Resource Utilization

Small Memory Device

Android Services & Local IPC Douglas C. Schmidt

5

Small Memory Device

Problem
• It‘s not feasible to have all App

Service implementations running
all the time since this ties up end-
system resources unnecessarily

Challenge: Processing a Long-Running Action

developer.android.com/training/articles/memory.html has more info

http://developer.android.com/training/articles/memory.html

Android Services & Local IPC Douglas C. Schmidt

6

Challenge: Processing a Long-Running Action
Solution
• Apply the Activator pattern

to activate & deactivate
Android Services
automatically
• If your app needs a Service

to perform work in the
background, don’t keep it
running unless it's actively
performing a job

ActivityManagerService

ServiceMap

Service

bindService()

Process.start()

Client 1

2

3

4
someMethodCall()

mServicesByNamePerUser

mServicesByIntentPerUser

Android Services & Local IPC Douglas C. Schmidt

7

Challenge: Processing a Long-Running Action
Solution
• Apply the Activator pattern

to activate & deactivate
Android Services
automatically
• If your app needs a Service

to perform work in the
background, don’t keep it
running unless it's actively
performing a job

• Be careful to never leak
your Service by failing to stop
it when its work is done

developer.android.com/training/articles/memory.html#Services has more info

ActivityManagerService

ServiceMap

Service

bindService()

Process.start()

Client 1

2

3

4
someMethodCall()

mServicesByNamePerUser

mServicesByIntentPerUser

http://developer.android.com/training/articles/memory.html#Services

Android Services & Local IPC Douglas C. Schmidt

8

Activator POSA4 Design Pattern
Intent
• Activator automates scalable on-demand activation & deactivation of

service execution contexts to run services accessed by many clients
without consuming excessive resources

www.dre.vanderbilt.edu/~schmidt/PDF/Activator.pdf has more info

http://kircher-schwanninger.de/michael/publications/CommandRevisited.pdf

Android Services & Local IPC Douglas C. Schmidt

9

Applicability
• When services in a system should only consume resources when they

are accessed actively by clients

Activator POSA4 Design Pattern

Android Services & Local IPC Douglas C. Schmidt

10

Applicability
• When services in a system should only consume resources when they

are accessed actively by clients
• When clients should be shielded from where services are located, how

they are deployed onto hosts or processes, & how their lifecycle is
managed

Activator POSA4 Design Pattern

Android Services & Local IPC Douglas C. Schmidt

11

Structure & Participants

Activity

Activator POSA4 Design Pattern

Android Services & Local IPC Douglas C. Schmidt

12

Structure & Participants

Intent

Activator POSA4 Design Pattern

Android Services & Local IPC Douglas C. Schmidt

13

Structure & Participants

Context

Activator POSA4 Design Pattern

Android Services & Local IPC Douglas C. Schmidt

14

Structure & Participants

Activity
Manager
Service

Activator POSA4 Design Pattern

Android Services & Local IPC Douglas C. Schmidt

15

Structure & Participants
 ServiceMap

Activator POSA4 Design Pattern

Android Services & Local IPC Douglas C. Schmidt

16

Structure & Participants

Linux Process

Activator POSA4 Design Pattern

Android Services & Local IPC Douglas C. Schmidt

17

Structure & Participants

IntentService

Activator POSA4 Design Pattern

Android Services & Local IPC Douglas C. Schmidt

18

Dynamics

Activator POSA4 Design Pattern
The Client uses the Activator

to get service access

Android Services & Local IPC Douglas C. Schmidt

19

Dynamics

When incoming requests arrive, the Activator looks up
whether a target object is already active & if the object is

not running it activates the Service Execution Context

Activator POSA4 Design Pattern

Android Services & Local IPC Douglas C. Schmidt

20

Dynamics

Activator POSA4 Design Pattern

An Activator can activate & passivate a
Service running in a server after each

method call, each transaction, etc

Android Services & Local IPC Douglas C. Schmidt

21

Dynamics

Activator POSA4 Design Pattern
The Activation Table
stores associations
between services &

their physical location

Android Services & Local IPC Douglas C. Schmidt

22

Dynamics

Activator POSA4 Design Pattern

A Service implements a specific type of
functionality that it provides to clients

Android Services & Local IPC Douglas C. Schmidt

23

ActivityManagerService

ServiceMap

Consequences
+ More effective resource

utilization
• Servers can be spawned

“on-demand,” thereby
minimizing resource
utilization until clients
actually require them

 Service

bindService()

Process.start()

Client 1

2

3

4
someMethodCall()

Activator POSA4 Design Pattern

mServicesByNamePerUser

mServicesByIntentPerUser

Android Services & Local IPC Douglas C. Schmidt

24

Consequences
+ More effective resource

utilization
+ Coarse-grained concurrency

• By spawning server
processes to run on
multi-core/CPU computers

Activator POSA4 Design Pattern
ActivityManagerService

ServiceMap

Service

bindService()

Process.start()

Client 1

2

3

4
someMethodCall()

mServicesByNamePerUser

mServicesByIntentPerUser

Android Services & Local IPC Douglas C. Schmidt

25

Consequences
+ More effective resource

utilization
+ Coarse-grained concurrency
+ Modularity, testability, &

reusability
• Application modularity &

reusability is improved by
decoupling server
implementations from
the manner in which the
servers are activated

Activator POSA4 Design Pattern
ActivityManagerService

ServiceMap

Service

bindService()

Process.start()

Client 1

2

3

4
someMethodCall()

mServicesByNamePerUser

mServicesByIntentPerUser

Android Services & Local IPC Douglas C. Schmidt

26

Consequences
– Lack of determinism &

ordering dependencies
• Hard to determine or

analyze the behavior of
an app until its components
are activated at runtime

Activator POSA4 Design Pattern
ActivityManagerService

ServiceMap

Service

bindService()

Process.start()

Client 1

2

3

4
someMethodCall()

mServicesByNamePerUser

mServicesByIntentPerUser

Android Services & Local IPC Douglas C. Schmidt

27

Consequences
– Lack of determinism &

ordering dependencies
– Reduced security & reliability

• An application that uses
Activator may be less
secure or reliable than
an equivalent statically-
configured application

Activator POSA4 Design Pattern
ActivityManagerService

ServiceMap

Service

bindService()

Process.start()

Client 1

2

3

4
someMethodCall()

mServicesByNamePerUser

mServicesByIntentPerUser

Android Services & Local IPC Douglas C. Schmidt

28

Consequences
– Lack of determinism &

ordering dependencies
– Reduced security & reliability
– Increased run-time overhead &

infrastructure complexity
• By adding levels of abstraction

& indirection when activating
& executing components

Activator POSA4 Design Pattern
ActivityManagerService

ServiceMap

Service

bindService()

Process.start()

Client 1

2

3

4
someMethodCall()

mServicesByNamePerUser

mServicesByIntentPerUser

Android Services & Local IPC Douglas C. Schmidt

29

Known Uses
• UNIX Inetd “super server”

• Internal services are fixed at
static link time
• e.g., ECHO & DAYTIME

Activator POSA4 Design Pattern

Internal
service

Internal
service

Internal
service

Android Services & Local IPC Douglas C. Schmidt

30

Known Uses
• UNIX Inetd “super server”

• Internal services are fixed at
static link time

• External services can be
dynamically reconfigured
• e.g., FTP, TELNET, & HTTP

Activator POSA4 Design Pattern

Internal
service

Internal
service

Internal
service

See en.wikipedia.org/wiki/Inetd for more on Inetd

http://en.wikipedia.org/wiki/Inetd

Android Services & Local IPC Douglas C. Schmidt

31

Known Uses
• UNIX Inetd “super server”
• CORBA Implementation Repository

Activator POSA4 Design Pattern

ImR (ringil:5000) Client

ringil:4500 plane.exe airplane_poa
server.exe poa_name ringil:5500 iiop://ringil:5000/poa_name/object_name

Server (ringil:5500)

1. some_request

4. LOCATION_FORWARD

2. ping
3. is_running

6. some_response

5. some_request

2.1 start

iiop://ringil:5500/poa_name/object_name

Android Services & Local IPC Douglas C. Schmidt

32

Known Uses
• UNIX Inetd “super server”
• CORBA Implementation Repository
• Android ActivityManagerService

Activator POSA4 Design Pattern

ActivityManagerService

ServiceMap
bindService()

Client 1

mServicesByNamePerUser

mServicesByIntentPerUser

Android Services & Local IPC Douglas C. Schmidt

33

Known Uses
• UNIX Inetd “super server”
• CORBA Implementation Repository
• Android ActivityManagerService

Activator POSA4 Design Pattern

ActivityManagerService

ServiceMap

Service

bindService()

Process.start()

Client 1

2

mServicesByNamePerUser

mServicesByIntentPerUser

Android Services & Local IPC Douglas C. Schmidt

34

Known Uses
• UNIX Inetd “super server”
• CORBA Implementation Repository
• Android ActivityManagerService

Activator POSA4 Design Pattern

ActivityManagerService

ServiceMap

Service

bindService()

Process.start()

Client 1

2

3
someMethodCall()

mServicesByNamePerUser

mServicesByIntentPerUser

Android Services & Local IPC Douglas C. Schmidt

35

Known Uses
• UNIX Inetd “super server”
• CORBA Implementation Repository
• Android ActivityManagerService

Activator POSA4 Design Pattern

ActivityManagerService

ServiceMap

Service

bindService()

Process.start()

Client 1

2

3

4
someMethodCall()

mServicesByNamePerUser

mServicesByIntentPerUser

Android Services & Local IPC Douglas C. Schmidt

36

Summary

• Activator frees clients from the responsibility of (re)activating the resources
they use
• It appears to them as if all resources were always (virtually) available

Android Services & Local IPC Douglas C. Schmidt

37

Summary

www.dre.vanderbilt.edu/~schmidt/PDF/Activator.pdf has more info

• Activator frees clients from the responsibility of (re)activating the resources
they use

• Activator also ensures that (re)activating a resource incurs minimal overhead
because it maintains information about how to optimize this process
• e.g., an activator could reload the resource’s persistent state & reacquire

the needed computing resources in parallel, thereby speeding resource
initialization

http://kircher-schwanninger.de/michael/publications/CommandRevisited.pdf

	Slide Number 1
	Learning Objectives in this Part of the Module
	Challenge: Minimizing Resource Utilization
	Challenge: Minimizing Resource Utilization
	Challenge: Processing a Long-Running Action
	Challenge: Processing a Long-Running Action
	Challenge: Processing a Long-Running Action
	Activator	 POSA4 Design Pattern
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Summary
	Summary

